Estimating the Heat Flow, Geothermal Gradient and Radiogenic Heat within the Young Granites of Jos Plateau North Central Nigeria

Document Type : Research Article

Authors

Department of Geophysics, Faculty of Physical Science, Federal University of Technology Minna, Minna, Nigeria.

Abstract

Both aeromagnetic and radiometric data were used to evaluate the Curie point depth and radiogenic heat production (RHP) of the young granitic regions of the Jos Plateau. An area of 55 by 110 square kilometers is bounded by latitude 9°30' to 10°00' N and longitude 8°30' to 9°30' E in central Nigeria. The magnetic data was subjected to spectral analysis to obtain the Curie depth, which was subsequently used to evaluate the geothermal gradient and heat flow for the area. Also, the concentration of radioelements (potassium, thorium and uranium) and the average density of the in-situ rock were used to estimate the radiogenic heat production at each point where the Curie point was evaluated. The heat flow in the study area ranges from 10 to 165.5 mW/m2 with an average value of 111.00 mW/m2. The regions with anomalous heat flow of 165.5 mW/m2 are located around Bowon Dodo, Dan Tsofo, Kadunu, Gimi, Kaura and Zankan in plateau state. The geothermal gradient values range from 5 to 68 °C/Km with an average of 26.16 °C/Km. The radiometric data analysis resulted in radiogenic heat values ranging from 0.4 µWm3   to 6 µW/m3 with an average radiogenic heat value of 3.36 µW/m3. Both analyses revealed that regions such as Ataka, Gimi, Jimjim and Pari could be investigated for geothermal energy potential. The high concentration of uranium, thorium and potassium associated with the study area is likely due to the weathering of the in-situ granitic basement rocks.

Keywords

Main Subjects


Abbady, A. G., El-Arabi, A. M., & Abbady, A. (2006). Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt. Applied radiation and isotopes, 64(1), 131-137.
Adagunodo, T. A., Bayowa, O. G., Usikalu, M. R., & Ojoawo, A. I. (2019). Radiogenic heat production in the coastal plain sands of Ipokia, Dahomey Basin, Nigeria. MethodsX, 6, 1608-1616.
Adetona, A. A., Salako, K. A., Rafiu A. A. (2017). Curie Depth and Geothermal Gradient from spectral analysis of aeromagnetic data over upper Anambra and lower Benue Basin, Nigeria. Nigeria Journal of Technological Research (NJTR), 12(2), 20-26, DOI:https://dx.doi.org/10.4314/njtr.v12i2.4.
Adetona, A. A., Fidelis, I. K., & Shakirat, B. A. (2023). Interpreting the magnetic signatures and radiometric indicators within Kogi State, Nigeria for economic resources. Geosystems and Geoenvironment, 2(2), 100157, https://doi.org/10.1016/j.geogeo.2022.100157.
Akinyemi, L., & Zui, V. I. (2019). Summary of heat flow studies in Nigeria.
Artemieva, Irina M., Hans Thybo, Kiki Jakobsen, Nanna K. Sørensen, and Louise SK Nielsen (2017). Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Science Reviews, 172, 1-26.
Bhattacharyya, B. K., & Leu, L. K. (1977). Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics, 42(1), 41-50.
Bhattacharyya, B. K., & Leu, L. K. (1975). Spectral analysis of gravity and magnetic anomalies due to two-dimensional structures. Geophysics, 40(6), 993-1013.
Birch, F. (1954). Heat from radioactivity. Nuclear geology, 148, 174.
Blakely, R. J. (1995). Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge.
Cull, J. P., & Conley, D. (1983). Geothermal gradients and heat flow in Australian sedimentary basins. Geoscience Australia, Canberra. Record 8(4), 329-337. http://pid.geoscience.gov.au/dataset/ga/81160.
Davies, G. F. (1980). Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. Journal of Geophysical Research: Solid Earth, 85(B5), 2517-2530.
Jaupart, C., Mareschal, J. C., & Iarotsky, L. (2016). Radiogenic heat production in the continental crust. Lithos, 262, 398-427.
Jessop, A. M., Habart, M. A., & Sclater, J. G. (1976). The world heat flow data collection 1975. Geothermal services of Canada. Geothermal Series, 50, 55-77.
Kuforijimi, O., & Aigbogun, C. (2017). Assessment of aero-radiometric data of Southern Anambra Basin for the prospect of radiogenic heat production. Journal of Applied Sciences and Environmental Management, 21(4), 743-748.
Lowrie, W., & Fichtner, A. (2020). Fundamentals of geophysics. Cambridge University Press.
Madu, A.J.C., Amoke, A.I., & Onuoha, M.K., (2015). Density and Magnetic Susceptibility Characterization in the Basement Complex Terrain of NE Kogi State/NW Benue State of Nigeria. International Journal of Science and Research (IJSR), 5(12).
McCay, A.T., Harley, T.L., Younger, P.L., Sanderson, D.C. & Cresswell, A.J. (2014). Gamma-ray spectrometry in geothermal exploration: State of the art techniques. Energies, 7(8), 4757-4780.
Macleod, W. N., Turner, D. C., & Wright, E. P. (1971). The Geology of Jos Plateau. Geological Survey of Nigeria, 32(1-2).
Maden, N. (2010). Curie-point depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central TURKEY). Pure Applied Geophysics, 167, 349–358.
Megwara, J. U., Udensi, E. E., Olasehinde, P. I., Daniyan, M. A., & Lawal, K. M. (2013). Geothermal and radioactive heat studies of parts of southern Bida basin, Nigeria and the surrounding basement rocks. Int J Basic Appl Sci, 2(1), 125-139.
Nagata, T. (1961). Rock magnetism. Tokyo, Maruzen Company Tokyo.                      
NGSA. (2009). Airborne geophysical survey specifications, Nigeria Geological Survey Agency, https://ngsa.gov.ng/geological-maps.
Nuri, D. M., Timur, U. Z., Mumtaz, H., & Naci, O. (2005). Curie Point Depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Journal of Earth planets Space, 57, 373-383.
Nwankwo, L. I., Olasehinde, P. I., & Akoshile, C. O. (2009). An attempt to estimate the Curie-point isotherm depths in the Nupe Basin, West Central Nigeria. Global Journal of Pure and Applied Science, 15, 427433.
Nwankwo, L. I., & Sunday, A. J. (2017). Regional estimation of Curie-point depths and succeeding geothermal parameters from recently acquired high-resolution aeromagnetic data of the entire Bida Basin, north-central Nigeria. Geothermal Energy Science, 5(1), 1.
Obaje, N. G. (2009). Geology and Mineral Resources of Nigeria, London: Springer Dordrecht Heidelberg, 5-14.
Okubo, Y., Graff, R. G., Hansen, R. O., Ogawa, K., & Tsu, H. (1985). Curie point depths of the Island of Kyushu and surrounding areas, Geophysics, 53, 481–494.
Raj, K., Bansal, A., & Abdolreza, G. (2020). Estimation of Depth to Bottom of Magnetic Sources Using Spectral Methods: Application on Iran's Aeromagnetic Data. Journal of Geophysical Research: Solid Earth, 125(3).
Rybach, L., (1976). Radioactive heat production: A physical property determined by the chemistry of rocks. In The Physics and Chemistry of Minerals and Rocks; Stems, R.G.J., Ed.; Wiley-Interscience: New York, USA, 1976; 309–318.
Salako, K.A., Adetona, A.A., Rafiu, A.A., Alahassan, U.D., Aliyu, A., & Adewumi, T. (2020). Assessment of geothermal potential of parts of middle Benue Trough, North-East Nigeria. J. Earth Space Phys., 45(4), doi: 10.22059/jesphys.2019.260257. 1007017.
Spector, A., & Grant, F. S. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293- 302.
Stacey, F. D. (1977). A thermal model of the Earth. Physics of the Earth and Planetary Interiors, 15(4), 341-348.
Tanaka, A. Y., Okubo, Y., & Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306, 461–470.
Telford, W. M., Geldart, L. P., Sherif, R. E., & Keys, D. A. (1990). Applied Geophysics. Cambridge: Cambridge University Press.
Trifonova, P., Zhelev, Z., Petrova, T., & Bojadgieva, K. (2009). Curie point depth of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics, 473, 362–374.