The effect of mid-latitude atmospheric circulation changes on the position of the Mediterranean trough and the occurrence of super heavy precipitation in Iran

Document Type : Research Article

Authors

1 Department of Climatology, Faculty of Geographical Sciences, University of Kharazmi, Tehran, Iran.

2 Department of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.

Abstract

Spatial variations of pressure patterns under the influence of large-scale atmospheric circulation create different conditions in terms of the intensity of synoptic systems affecting on extreme climatic phenomena. Regarding large-scale patterns, not only the changes of extreme events are considered, but also the changes and developments of synoptic systems on a regional scale are studied. Weather extremes have a great significance for society, as they pose a threat to human life and can result in enormous economic damage and disruption. The physical understanding and timely prediction of extreme weather events are of enormous importance to society regarding associated impacts. Extreme precipitation events (EPEs) is one of the most frequent natural hazards that affects the domain, eventually leading to floods. Synoptic systems in mid-latitudes such as blocking, ridge and troughs cause spatial changes in westerly waves. Spatial variations of atmospheric waves occur when, which normally move from west to east, change their main direction to the north or south. The occurrence of precipitation in the Middle East is related to the changes in waves and the position of the Mediterranean trough. Extreme precipitation events in the Middle East often result from tropical-extratropical interaction, whereby midlatitude forcing and poleward transport of tropical moisture are of central importance. The Mediterranean Sea region is considered to be one of the most important and major areas for circulation in the Northern Hemisphere, so that most of Iran's rain cyclones are formed over the Mediterranean Sea. In other words, Iran's rainfall in the cold period of the year is influenced by the Mediterranean circulation patterns. Evidence shows that the large-scale atmospheric circulation over the North Atlantic plays an important role in the Mediterranean circulation changes. We investigated the effect of mid-latitude atmospheric circulation changes on the position of the Mediterranean trough and the occurrence of super heavy precipitation in Iran. In this research, two category of upper atmosphere data were used. The first is daliy precipitation data for 350 stations that were made available by the Iranian Meteorological Organization (IRIMO). The second dataset is the geopotential height, relative vorticity, potential vorticity, U, V-component of wind and Relative humidity, extracted from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA5) reanalysis with grids at 0.25×0.25 resolution. In this regard, 150 extreme and widespread rains were identified, then using the sinuosity index, the changes of the most frequent contours (550, 565 and 575 decimeters) during the precipitations were identified over the North Atlantic and Mediterranean. The aim of this study was to find the relationship between the spatial variations of the upper level waves over the North Atlantic and the Mediterranean (-80° W to 70° E, 10° N to 60° N). According to sinuosity index, the minimum sinuosity value is about 1 indicating zonal flow. Any sinuosity value greater than 1 indicates an increase in atmospheric waves. The spatial changes of the Mediterranean trough are due to the meridian changes of currents over the North Atlantic, Europe. The blocking system over the Atlantic was responsible for both the amplification of the downstream trough, as well as the formation and expansion of the trough towards the Eastern Mediterranean. The results show that extremely heavy and widespread rains occur under the influence of the formation of the Mediterranean trough and the expansion of winds from the European side and the strengthening of the North Atlantic trough. The results showed that the position and changes of the Mediterranean trough are associated with the circulation pattern of the North Atlantic. Multiple Atlantic trough are associated with each case of Mediterranean trough downstream. The formation of the Atlantic trough causes an increase in the range of atmospheric waves and the formation of a ridge over Europe and the development of the Mediterranean trough. Under these conditions the Mediterranean Sea experiences 8 longitudinal and latitudinal changes compared to its average. Therefore, the spatial variations of the Mediterranean trough are due to the meridian changes of the European flows and the expansion of the high north side (tropical side) downstream of the western wind. Simultaneously with the formation of blocking over Europe in its eastern part, the dynamic ridge causes the transfer of cold winds over the Mediterranean, which strengthens and expands the Mediterranean trough to the east. These conditions, with the strengthening of the conditions of ascent and eastward movement of the Mediterranean trough, the Arabian Subtropical Anticyclone (ASA) also expands eastward. During the heavy rains of Iran, by strengthening the conditions of ascent and eastward expansion to the Mediterranean trough, the ASA also expands to the east. Therefore, with the location of the ASA over the northern Indian Ocean, the Arabian Sea, and the Oman Sea, more moisture is provided to the atmosphere, which is accompanied by the intensification of extremely intense and widespread precipitation. In general, the position of the Mediterranean trough during heavy rains is such that the western and southwestern regions of the country receive most of the precipitation. These conditions are more severe due to the orographic factor of ascent caused by the Zagros mountains in this region.

Keywords

Main Subjects


احمدی گیوی، ف. و نصر اصفهانی، م ع. (1382). مطالعه چرخندهای مدیترانه در دوره یک ساله و تأثیر آن بر آب و هوای خاورمیانه، مجله فیزیک زمین و فضا، 2، 66-71.
اسدی رحیم‌بیگی، ن.؛ زرین، آ.؛ مفیدی، ع. و داداشی رودباری، ع. (1400). تحلیل پراکنش فصلی بارش‌های فرین در ایران با استفاده از پایگاه AgERA5. تحقیقات آب و خاک ایران، 52(11)، 2723-2737.
اسعدی، ع.؛ احمدی گیوی، ف.؛ قادر، س. و محب‌الحجه، ع. (1395). بررسی دینامیک مسیر توفان مدیترانه از دیدگاه شار فعالیت موج راسبی. مجله ژئوفیزیک ایران، (5)، 4، 45-31.
حبیبی، ف. (1386). نقش سامانه­های بندالی در چرخندزایی روی شرق مدیترانه و بررسی نقش آن در سیل روی منطقه غرب ایران در مارس 2000. پژوهش­های جغرافیایی، 62، 109-127.
حجتی، ز. و مسعودیان، ا. (1400). واکاوی تغییرات گردش­های جوی عرض­های میانه و پیوند آن با وردش­های دمایی در ایران. فصلنامه جغرافیا و توسعه، 19(62)، 31-52.
حیدری م ا. و خوش اخلاق، ف. (۱۳۹۴). اثر گرمایش جهانی بر مرکز چرخندزایی شرق مدیترانه و ارتباط آن با ناهنجاری بارش نیمه‌ی غربی ایران. مطالعات جغرافیایی مناطق خشک، ۶ (۲۲)، ۸۸-72.
جهانبخش اصل، س.؛ ساری صراف، ب.؛ عساکره، ح. و شیرمحمدی، س. (1399). واکاوی تغییرات زمانی-مکانی بارش­های بحرانی(فرین بالا) در غرب ایران طی سال­های 1965-2016. نشریه تحلیل فضایی مخاطرات محیطی، 7(1)، 89-160.
رضائیان، م.؛ محب‌الحجه، ع.؛ احمدی گیوی، ف. و نصراصفهانی، م ع. (1393). تحلیل آماری-دینامیکی رابطه بین مسیر توفان مدیترانه و نوسان اطلس شمالی برمبنای فرایافت فعالیت موج. مجله فیزیک زمین و فضا، 5(4)، 31-45.
سلیمانی زاده، م ج. و مرادی، م. (1399). بررسی همدیدی بارش­های فرین در شهر تهران. جغرافیا و روابط انسانی، 3(3)، 64-79.
علیجانی، ب. (1378). نوسانات مکانی و زمانی ارتفاع سطح 500 هکتوپاسکال در مدیترانه و اثر آن بر اقلیم ایران در ماه فوریه. دومین کنفرانس منطقه ای تغییر اقلیم
علیجانی، ب. و نظاماتی، ح. (1393). بررسی تغییرات مکانی فرود مدیترانه، جغرافیا و برنامه ریزی محیطی، 28(2)، 92-72.
عساکره، ح. و خجسته، آ. (1400). فراوانی ورود چرخندهای مدیترانه­ای به ایران و اثر آن ها بر بارش‌های فراگیر. مخاطرات محیط طبیعی، 10(27) 159-176.
عساکره، ح.؛ دارند، م. و زندکریمی، س. (1401). بررسی رابطه تغییر تراز فشار وردایست با چرخند‌های توأم با بارش‌های فراگیر ایران. مجله فیزیک زمین و فضا، 48 (1)، 75-92.
ملاشریفی، آ.؛ محب الحجه، ع. و احمدی گیوی، ف. (1397). مطالعه اثر نوسان اطلس شمالی بر رابطه بین مسیرهای توفان شمالی و مدیترانه با استفاده از داده های بازتحلیل NCEP/NCAR و JRA-55. مجله فیزیک زمین و فضا، 45(2)، 423-440.
Aljani, B. )2002 .(Variation of 500hpa flow patterns over Iran and surrounding areas and their relationship with climate of Iran. Theoretical and applied climatology. 71, 41-4.
Antokhina, O., Antokhin, P., Gochakov, A., Zbirannik, A., & Gazimov, T.) 2023(. Atmospheric Circulation Patterns Associated with Extreme Precipitation Events in Eastern Siberia and Mongolia. Atmosphere, 14(3), 480.
Aragão, L., & Porcù, F. (2022). Cyclonic activity in the Mediterranean region from a high-resolution perspective using ECMWF ERA5 dataset. Climate Dynamics, 58(5-6), 1293-1310.
Bell, G. D., & Bosart, L. F. (1989). A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers. Monthly Weather Review, 117(10), 2142-2164.
Berkovic, S., & Raveh‐Rubin, S. (2022). Persistent warm and dry extremes over the eastern Mediterranean during winter: The role of North Atlantic blocking and central Mediterranean cyclones. Quarterly Journal of the Royal Meteorological Society, 148(746), 2384-2409.
Chase, B. M., Boom, A., Carr, A. S., Meadows, M. E., & Reimer, P. J. (2013). Holocene climate change in southernmost South Africa: rock hyrax middens record shifts in the southern westerlies. Quaternary Science Reviews, 82, 199-205.
De Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., & Lelieveld, J. (2013). Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough. Journal of Geophysical Research: Atmospheres, 118(13), 7087-7108.
Ding, F., & Li, C. (2017). Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China. J. Geophys. Res. Atmos, 122, 7385–7400, doi:10.1002/2017JD026530.
Ezer, T. (2020). Analysis of the changing patterns of seasonal flooding along the US East Coast. Ocean Dynamics, 70(2), 241-255
Flaounas E, Raveh-Rubin S, Wernli, H, Drobinski P, & Bastin S. (2015). The dynamical structure of intense Mediterranean cyclones. Climate Dynamics, 44, 2411–2427.
Hochman, A., Alpert, P., Harpaz, T., Saaroni, H., & Messori, G. (2019). A new dynamical systems perspective on atmospheric predictability: Eastern Mediterranean weather regimes as a case study. Science advances, 5(6), eaau0936
Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676-679.
Kotsias, G., Lolis, C. J., Hatzianastassiou, N., Bakas, N., Lionello, P., & Bartzokas, A. (2023). Objective climatology and classification of the Mediterranean cyclones based on the ERA5 data set and the use of the results for the definition of seasons. Theoretical and Applied Climatology, 152 (1-2), 581-597.
Li, Z., Li, T., Yu, W., Li, K., & Liu, Y. (2016). What controls the interannual variation of tropical cyclone genesis frequency over Bay of Bengal in the post‐monsoon peak season?. Atmospheric Science Letters, 17(2), 148-154.
Mastrantonas, N., Herrera‐Lormendez, P., Magnusson, L., Pappenberger, F., & Matschullat, J. (2021). Extreme precipitation events in the Mediterranean: Spatiotemporal characteristics and connection to large‐scale atmospheric flow patterns. International Journal of Climatology, 41 (4), 2710-2728.
Nie, Y., Zhang, Y., Zuo, J., Wang, M., Wu, J., & Liu, Y. (2023). Dynamical processes controlling the evolution of early-summer cut-off lows in Northeast Asia. Climate Dynamics, 60(3-4), 1103-1119.
Raveh‐Rubin, S., & Flaounas, E. (2017). A dynamical link between deep Atlantic extratropical cyclones and intense Mediterranean cyclones. Atmospheric Science Letters, 18(5), 215-221.
Raziei, T., Mofidi, A., Santos, J. A., & I. (2012). Spatial patterns and regimes of daily precipitation in Iran in relation to large‐scale atmospheric circulation. International Journal of Climatology, 32(8), 1226-1237.
Rodwell, M. J., Rowell, D. P. & Folland, C. K. (1999). Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320-323.
Romem, M., Ziv, B., & Saaroni, H. (2007). Scenarios in the development of Mediterranean cyclones. Advances in Geosciences, 12, 59-65.
Şahin, S., Türkeş, M., Wang, S. H., Hannah, D., & Eastwood, W. (2015). Large scale moisture flux characteristics of the Mediterranean basin and their relationships with drier and wetter climate conditions. Climate Dynamics, 45, 3381-3401.
Trigo, I. F., Bigg, G. R., & Davies, T. D. (2002). Climatology of cyclogenesis mechanisms in the Mediterranean. Monthly Weather Review, 130, (3), 549-569.
Wernli H., & Schwierz C. (2006). Surface cyclones in the ERA-40 Dataset (1958–2001). Part I: novel identification method and global climatology. Journal of the Atmospheric Sciences, 63, 2486–2507.
Zhu, N., Zhang, Z., Gnanamanickam, E., & Leishman, J. G. (2022). Dynamics of large-scale flow structures within ship airwakes. In AIAA Scitech 2022 Forum (p. 2532).