Stress Field Inversion Analysis of Earthquake Focal Mechanisms in Northwestern Iran: Implications for Tectonic Regimes

Document Type : Research Article

Authors

1 Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.

2 Department of Surveying, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.

Abstract

Understanding the stress field is crucial for assessing seismic risks in Northwestern Iran, a region known for its high seismic activity and geological volatility. The intricate tectonic arrangements involving the Arabian, Anatolian and Eurasian plates contribute to the unstable nature of the area. This study focuses on deducing stress regimes through stress inversion analysis of earthquake focal mechanisms in the North Tabriz Fault system. Analyzing the stress field is essential for understanding the elastic characteristics and geodynamics of the region. This study considers the stress field surrounding the Tabriz Fault, aiming to determine stress parameters and principal stress orientations using focal mechanisms. By analyzing 35 earthquake focal mechanism datasets from the Global Centered Moment Tensor and the Iranian Seismological Center, stress field inversions were conducted using Michael's linear inversion method and the iterative joint inversion method. The two techniques yielded distinct outcomes, with the iterative joint inversion method proving more accurate in determining stress fields and principal stress orientations. The Plunge values of  and  were observed to be relatively insignificant, measuring 3.24 and 2.06, respectively. A value close to 90 degrees, specifically 86.14, was determined for . The trend values for  and  were found to be 146.08 and 55.97, respectively, while  exhibited a trend value of 293.51. To estimate the orientation of the maximum horizontal stress (SH), the iterative joint inversion method was employed, yielding an estimation of . The trend and plunge calculated from this method for ,  and  were also utilized in this estimation. The findings indicate the existence of strike-slip faults in proximity to the North Tabriz Fault. The stress direction observed and the trajectory of the fault system suggest the influence of a transpressional mechanism. The predominant right-lateral strike-slip motion observed aligns with the prevailing tectonic regime in the region, providing evidence of strike-slip and thrust faulting stress regimes. The results contribute to a better understanding of the stress field and geodynamic situation in Northwestern Iran. They provide valuable insights for spatial analysis of future earthquakes and assessing seismic hazards in the region.

Keywords

Main Subjects


Aflaki, M., Shabanian, E., Sahami, S., & Arshadi, M. (2021). Evolution of the stress field at the junction of Talesh–Alborz–Central Iran during the past 5 Ma: implications for the tectonics of NW Iran. Tectonophysics, 821, 229115.
Afra, M., Moradi, A., & Pakzad, M. (2017). Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms. Journal of Geodynamics, 111, 50-60.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B., & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geological Magazine, 148(5-6). 692-725.
Allen, M., Jackson, J., & Walker, R. (2004). Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics, 23(2).
Ambraseys, N. N., & Melville, C. P. (2005). A history of Persian earthquakes, Cambridge university press.
Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3). 387-402.
Angelier, J. (1979). Determination of the mean principal directions of stresses for a given fault population. Tectonophysics, 56(3-4), T17-T26.
Arnold, R., & Townend, J. (2007). A Bayesian approach to estimating tectonic stress from seismological data. Geophysical Journal International, 170(3), 1336-1356.
Bayer, R., Chery, J., Tatar, M., Vernant, P., Abbassi, M., Masson, F., Nilforoushan, F., Doerflinger, E., Regard, V., & Bellier, O. (2006). Active deformation in Zagros—Makran transition zone inferred from GPS measurements. Geophysical Journal International, 165(1), 373-381.
Berberian, M. (1994). Natural hazards and the first earthquake catalogue of Iran: historical hazards in Iran prior to 1900, UNESCO.
Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake rupture in the Iranian Plateau. Bulletin of the Seismological society of America, 89(1), 120-139.
Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological magazine, 96(2), 109-117.
Carey, E. (1974). Analyse theorique et rumerique d'un modele mecanique elementaire applique a l'etude d'une population de failles: Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie D, Sciences Naturelles, 279(11), 891-894.
Célérier, B. (2008). Seeking Anderson's faulting in seismicity: a centennial celebration. Reviews of Geophysics, 46(4).
Copley, A., & Jackson, J. (2006). Active tectonics of the Turkish‐Iranian plateau. Tectonics, 25(6).
Dabiri, R., Emami, M., Mollaei, H., Chen, B., Abedini, M., Omran, N., & Ghaffari, M. (2011). Quaternary post-collision alkaline volcanism NW of Ahar (NW Iran): geochemical constraints of fractional crystallization process. Geologica Carpathica, 62(6), 547.
Dewey, J., Hempton, M., Kidd, W., Saroglu, F., & Şengör, A. (1986). Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. Geological Society, London, Special Publications, v. 19, no. 1, p. 1-36.
Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J.-F., Hinderer, J., Hatam, Y., Luck, B., Le Moigne, N., & Sedighi, M. (2010). GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran. Geophysical Journal International, 183(3), 1287-1301.
Djamour, Y., Vernant, P., Nankali, H. R., & Tavakoli, F. (2011). NW Iran-eastern Turkey present-day kinematics: results from the Iranian permanent GPS network. Earth and Planetary Science Letters, 307(1-2), 27-34.
Gephart, J. W., & Forsyth, D. W. (1984). An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence, Journal of Geophysical Research: Solid Earth, 89(B11), 9305-9320.
Ghods, A., Shabanian, E., Bergman, E., Faridi, M., Donner, S., Mortezanejad, G., & Aziz-Zanjani, A. (2015). The Varzaghan–Ahar, Iran, Earthquake Doublet (M w 6.4, 6.2): implications for the geodynamics of northwest Iran. Geophysical Journal International, 203(1), 522-540.
Hardebeck, J. L., & Michael, A. J. (2006). Damped regional‐scale stress inversions: Methodology and examples for southern California and the Coalinga aftershock sequence. Journal of Geophysical Research: Solid Earth, 111(B11).
Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6(6), 687-705.
Hessami, K., Jamali, F., & Tabassi, H. (2003a). Major active faults of Iran. IIEES, Tehran.
Hessami, K., Nilforoushan, F., & Talbot, C. J. (2006). Active deformation within the Zagros Mountains deduced from GPS measurements. Journal of the Geological Society, 163(1), 143-148.
Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M. R., Feghhi, K., & Solaymani, S. (2003b). Paleoearthquakes and slip rates of the North Tabriz Fault, NW Iran. preliminary results: Annals of Geophysics.
Jackson, J. (1992). Partitioning of strike‐slip and convergent motion between Eurasia and Arabia in eastern Turkey and the Caucasus. Journal of Geophysical Research: Solid Earth, 97(B9), 12471-12479.
Jackson, J., & McKenzie, D. (1984). Active tectonics of the Alpine—Himalayan Belt between western Turkey and Pakistan. Geophysical Journal International, 77(1), 185-264.
Jacques, A. (2002). Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV—a new method free of choice among nodal planes. Geophysical Journal International, 150(3), 588-609.
Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics, John Wiley & Sons.
Karakhanian, A. S., Trifonov, V. G., Philip, H., Avagyan, A., Hessami, K., Jamali, F., Bayraktutan, M. S., Bagdassarian, H., Arakelian, S., & Davtian, V. (2004). Active faulting and natural hazards in Armenia, eastern Turkey and northwestern Iran. Tectonophysics, 380(3-4), 189-219.
Khorrami, F., Vernant, P., Masson, F., Nilfouroushan, F., Mousavi, Z., Nankali, H., Saadat, S. A., Walpersdorf, A., Hosseini, S., & Tavakoli, P. (2019). An up-to-date crustal deformation map of Iran using integrated campaign-mode and permanent GPS velocities. Geophysical Journal International, 217(2), 832-843.
Lay, T., & Wallace, T. C. (1995). Modern global seismology, Elsevier.
Lund, B., & Slunga, R. (1999). Stress tensor inversion using detailed microearthquake information and stability constraints: Application to Ölfus in southwest Iceland. Journal of Geophysical Research: Solid Earth, 104(B7), 14947-14964.
Lund, B., & Townend, J. (2007). Calculating horizontal stress orientations with full or partial knowledge of the tectonic stress tensor. Geophysical Journal International, 170(3), 1328-1335.
Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignieres, M., Nankali, H., & Van Gorp, S. (2007). Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophysical Journal International, 170(1), 436-440.
Masson, F., Djamour, Y., Van Gorp, S., Chéry, J., Tatar, M., Tavakoli, F., Nankali, H., & Vernant, P. (2006). Extension in NW Iran driven by the motion of the South Caspian Basin. Earth and Planetary Science Letters, 252(1-2), 180-188.
Maury, J., Cornet, F. H., & Dorbath, L. (2013). A review of methods for determining stress fields from earthquakes focal mechanisms; Application to the Sierentz 1980 seismic crisis (Upper Rhine graben). Bulletin de la Societe Geologique de France, 184(4-5), 319-334.
McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
McKenzie, D. P. (1969). The relation between fault plane solutions for earthquakes and the directions of the principal stresses. Bulletin of the Seismological Society of America, 59(2), 591-601.
Michael, A. J. (1984). Determination of stress from slip data: faults and folds. Journal of Geophysical Research: Solid Earth, 89(B13), 11517-11526.
Mousavi, Z., Walpersdorf, A., Walker, R., Tavakoli, F., Pathier, E., Nankali, H., Nilfouroushan, F., & Djamour, Y. (2013). Global Positioning System constraints on the active tectonics of NE Iran and the South Caspian region. Earth and Planetary Science Letters, 377, 287-298.
Mouthereau, F., Lacombe, O., & Vergés, J. (2012). Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics, 532, 27-60.
Niassarifard, M., Shabanian, E., Azad, S. S., & Madanipour, S. (2021). New tectonic configuration in NW Iran: Intracontinental dextral shear between NW Iran and SE Anatolia. Tectonophysics, 811, 228886.
Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., Nankali, H., Hatzfeld, D., Bayer, R., & Tavakoli, F. (2003). GPS network monitors the Arabia-Eurasia collision deformation in Iran, Journal of Geodesy, 77, 411-422.
Nouri, A., Rahimi, B., Vavryčuk, V., & Ghaemi, F. (2023). Spatially varying crustal stress along the Zagros seismic belt inferred from earthquake focal mechanisms. Tectonophysics, 846, 229653.
Peyret, M., Djamour, Y., Hessami, K., Regard, V., Bellier, O., Vernant, P., Daignieres, M., Nankali, H., Van Gorp, S., & Goudarzi, M. (2009). Present-day strain distribution across the Minab-Zendan-Palami fault system from dense GPS transects. Geophysical Journal International, 179(2), 751-762.
Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H., Hatzfeld, D., Tatar, M., Djamour, Y., Nilforoushan, F., & Cotte, N. (2008). Distribution of the right-lateral strike–slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science Letters, 275(3-4), 342-347.
Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69-77.
Vavryčuk, V., Bouchaala, F., & Fischer, T. (2013). High-resolution fault image from accurate locations and focal mechanisms of the 2008 swarm earthquakes in West Bohemia, Czech Republic. Tectonophysics, 590, 189-195.
Vernant, P., & Chery, J. (2006). Low fault friction in Iran implies localized deformation for the Arabia–Eurasia collision zone. Earth and Planetary Science Letters, 246(3-4), 197-206.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., & Bayer, R. (2004). Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157(1),  381-398.
Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. The Journal of geology, 59(2), 118-130.
Walpersdorf, A., Hatzfeld, D., Nankali, H., Tavakoli, F., Nilforoushan, F., Tatar, M., Vernant, P., Chéry, J., & Masson, F. (2006). Difference in the GPS deformation pattern of North and Central Zagros (Iran). Geophysical Journal International, 167(3), 1077-1088.
Zamani, B. (2013). Stress State Study of Siah Cheshmeh-Khoy Fault Zone (NW-Iran) and Using Stress Separation Method in Separation of Neotectonic Stresses from Paleostresses. Scientific Quarterly Journal of Geosciences, 23(89), 75-88. doi: 10.22071/gsj.2013.53557
Zamani, B., Angelier, J., & Zamani, A. (2008). State of stress induced by plate convergence and stress partitioning in northeastern Iran, as indicated by focal mechanisms of earthquakes. Journal of Geodynamics, 45(2-3), 120-132.
Zarifi, Z., Nilfouroushan, F., & Raeesi, M. (2014). Crustal stress map of Iran: insight from seismic and geodetic computations. Pure and Applied Geophysics, 171, 1219-1236.