Abdallah, A. T. M. (2016). Bernese GNSS Software Handout University of Stuttgart, Germany.
Aurenhammer, F. (1991). Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23, 345-405.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97, 15787-15801.
Blanch, J. (2004). Using Kriging to Bound Satellite Ranging Errors Due to the Ionosphere, Stanford University, California.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Cambardella, C. A., Moorman, T. B., Novak, J., Parkin, T. B., Karlen, D., Turco, R., and Konopka, A. E. (1994). Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci Soc Am J., 58(5), 1501-1511.
Carlson, T. (1993). Mid-Latitude Weather Systems. Transactions of the Institute of British Geographers, 18.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
Cristianini, N., & Shawe-Taylor, J. (2001). An introduction to support vector machines and other kernel-based learning methods. Repr. Introduction to Support Vector Machines and other Kernel-Based Learning Methods 22.
Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88, 2783-2792.
Egova, E. S. (2015). Integrated water vapour comparison from GNSS and WRF model for Bulgaria in 2013., Sofia University Unpublished master’s thesis. Bulgaria.
Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global Positioning System. Theory and practice.
Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vector classification. Taipei, Taiwan.
James, G. (2013). An Introduction to Statistical Learning. Springer.
Kleijer, F. (2004). Troposphere Modeling and Filtering for Precise GPS Leveling.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2, 18-22.
Lo, J., & El-Mowafy, A. (2011). Interpolation of the GNSS wet troposphere delay. In Surveying and Spatial Sciences Conference, 2011, 425-438. New Zealand Institute of Surveyors and the Surveying and Spatial Sciences.
Rahbar, S. S. M. (2016). Comparison of different methods of determining the geodetic height correction level: A case study of Tehran city. Iran Geophysics Journal, 10, 40-52.
Rahman, H. (2018). Evaluation of Synthetic CPT and Soil Boring Data by Various Spatial Interpolation Techniques.
Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 105, 279-298.
Sambridge, M., Braun, J., & McQueen, H. (1995). Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophysical Journal International, 122, 837-857.
Scholkopf, B., & Smola, A. J. (2018). Learning with kernels: support vector machines, regularization, optimization, and beyond, MIT press.
Seeber, G. (2003). Satellite Geodesy: foundations,methods and application, 2nd Edition/Ed.
Sukumar, N., Moran, B., & Belytschko, T. (1998). The natural element method in solid mechanics. International journal for numerical methods in engineering, 43, 839-887.
Suthaharan, S. (2016). Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning" (S. Suthaharan, ed.), 207-235. Springer US, Boston, MA.
Wallace, J. M., & Hobbs, P. V. (2006). Preface to the Second Edition. In Atmospheric Science (Second Edition) (J. M. Wallace and P. V. Hobbs, eds.), pp. xi-xiii. Academic Press, San Diego.
Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists, John Wiley & Sons.
Zhang, R., Shen, Y., Tang, Z., Li, W., & Zhang, D. (2022). A review of numerical research on the pressure swing adsorption process. Processes 10, 812.