Upper Crustal Structure of South West of Tehran Using Borehole Ambient Noise Tomography


1 Ph.D. Student, Seismology Department, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran

2 Assistant Professor, Seismology Department, International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran


The crustal structure study based on ambient noise measurements has become a popular, fast and reliable method in earthquake seismology in recent years around the world. Generally, not only in seismology but also in other applications which deal with signals, accept noise as an undesired component of the signal. It is believed that noise obscures data and does not contain useful information. Ambient noise measurements promise significant improvements in the resolution and accuracy of crustal and upper mantle images. Traditional dispersion analysis, however, does not yield reliable estimates of the structure in the shallow crust because of strong scattering at short-periods (T<30). Recent advances in surface-wave ambient noise tomography (e.g., Shapiro et al., 2005; Sabra et al., 2005; Yao et al., 2006; Yang et al., 2007; Lin et al., 2007) greatly enhance our ability to resolve the shallow crustal structure. In this study, we apply ambient noise tomography to image and investigate the shallow shear velocity structure of the upper crust beneath south west of Tehran area. Data from seven stations of Iranian Long Period Array (ILPA) are acquired from IRIS free data center. These data were recorded during 1975 to 1977 in corporation of the FDSN with the Institute of Geophysics at University of Tehran. At the moment, all continuous seismic waveforms are available for researchers. After obtaining the continuous waveforms, we preprocessed and segmented the data into one hour time windows. Hourly cross correlation of ambient noise between all station pairs were calculated and group velocity of Rayleigh waves dispersion curve in periods between 3 to 10 seconds are measured from the Green’s function resulting cross correlations. To determine dispersion curves of surface waves we have used the Frequency-Time Analysis technique (FTAN). Because of using borehole seismometer in ILPA array and our new Gaussian noise selection proposed method; all Green functions had acceptable SNR ratio and greater than 10. Therefore, we predict the suitable and reliable result of Green’s functions in comparison with ambient noise of free surface seismometers. Then using dispersion map in each period, we extracted a local dispersion curve for each grid point. Finally, the quasi-3D shear wave velocity model in the study area provided using nonlinear inversion procedure for each grid point of local dispersion curves by means of Shapiro et al., (2005) technique. By preparing different shear wave velocity profiles in the direction of NE-SW, of the studied area, we try to image the changing velocity variations and trends along the profiles, which can indicate the existence of one of the branches of the IPAK fault, or the existence of an anticline with the axis in this direction and the slope to mards the northeast direction. The results indicate a reliable image from upper crust of south east of Tehran region in consistent with the results of Doloei and Roberts (2003) from teleseismic P-waveform time domain receiver function (RF) method. Moreover, the upper crustal structural model proposed for this area is in agreement with surface geological setting. Therefore, we suggest that for isolating the ambient noise from temporary and very local conditions, the digging and covering the seismic stations prepares a suitable noise level for the crustal structure studies.


Main Subjects

بربریان، م.، قریشی، م.، ارژنگروش، ب. و مهاجر اشجعی، الف.، 1362، تکتونیک جوان، لرزه زمینساخت و مطالعه خطر زمینلرزه در ناحیه قزوین. گزارش داخلی سازمان زمینشناسی کشور، شماره 57، ص 84.
بیکپور، ش.، 1383، تحلیل ساختاری گسل ایپک (از جنوب اشتهارد تا جنوب بوئین‌زهرا)، پایان‌نامه کارشناسی ارشد، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران.
جواندلوئی، غ. و موقری، ر.، 1392، پردازش نوفه محیطی ابزاری قوی برای تعیین ساختار سرعتی پوسته، پژوهشنامه زلزله‌شناسی و مهندسی زلزله، شمارگان 60، سال 16، تابستان 92، تهران.
حسینی، م. و رحیمی، ب.، ۱۳۹۰، مطالعه ساختاری و کینماتیکی گسل سیاه کوه شمال جاجرم. سی‌امین گردهمایی علوم زمین، تهران، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
شیخ‌الاسلامی، م. ر.،  جوادی، ح. ر.، اسدی سرشار، م.، آقاحسینی، ا.، کوه‌پیما، م. و وحدتی دانشمند، ب.، 1392، دانشنامه‌ی گسله‌های ایران. سازمان زمین‌شناسی و اکتشافات معدنی کشور، نشر رهی، 600 صفحه، تهران.
کیانیفر، ر. و پورکرمانی، م.، 1390، تحلیل ساختاری گسل رباط‌کریم و توان لرزه‌زایی آن، فصل‌نامه علوم زمین، 6،21 ، 49-27.
موقری، ر.، جواندلوئی، غ.، نوروزی، م. و سدیدخوی، ا.، 1393، تعیین ساختار سرعتی پوسته جنوب شرق ایران براساس نوفه محیطی لرزه نگاشت‌های باندپهن. مجله فیزیک زمین و فضا، 40، 2، 17-30.
Arroucau, P., Rawlinson, N. and Sambridge, M., 2010, New insight into Cainozoic sedimentary basins and Palaeozoic suture zones in southeast Australia from ambient noise surface wave tomography. Geophysical Research Letters, 37(7).
Barmin, M. P., Ritzwoller, M. H. and Levshin, A. L., 2001, A fast and reliable method for surface wave tomography. Pure Appl. Geophys., 158, 1351–1375, doi:10.1007/ PL00001225.
Bensen, G. D., Ritzwoller M. H., Barmin, M. P., Levshin, A. L., Lin, F., 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169, 1239–60.
Berberian, M., 1971, Preliminary report on the structural analysis of Ipak active fault. Geol. Surv. Iran, Int. Rep.
Berberian, M. and King, G. C. P., 1981, Toward a paleogeography and tectonic evolution of Iran. Can. J. Earth. Sci., 18, 210-265.
Campillo, M., Roux, P. and Shapiro, N. M., 2011, Correlation of seismic ambient noise to image and monitor the solid Earth. Encyclopedia of Solid Earth Geophysics, Springer-Verlag. doi:10.1007/978-90-481-8702-7.# Science+ Business Media B.V.
De Martni, P. M., Hessami, K., Pantosti, D., D’Addezio, G., Alinaghi, H., Ghafory-Ashtiani, M., 1998, A geologic contribution to the evaluation of the seismic potential of the Kahrizak Fault (Tehran, Iran). Tectonophysics, 287, 187-199.
Doloei, J. and Roberts, R., 2003, Crust and uppermost mantle structure of Tehran region from analysis of teleseismic P-waveform receiver functions. Tectonophysics, 364(3), 115-133.
Groos, J. C., Bussat, S. and Ritter, J. R. R., 2011, Performance of different processing schemes in seismic noise cross-correlations. Geophysical Journal International, 188(2), 498-512.
Groos, J. C. and Ritter, J. R. R, 2009, Time domain classification and quantification of seismic noise in an urban environment. Geophys. J. Int., 179, 1213–1231.
Herrmann, R. B. and Ammon, C. J., 2002, Computer Programs in Seismology, Surface Waves, Receiver functions and Crustal structure. Department of Earth and Atmospheric Sciences, Saint Louis University, St Louis.
Jiang, C., Yang, Y., Rawlinson, N. and Griffin, W. L., 2016, Crustal structure of the Newer Volcanics Province, SE Australia, from ambient noise tomography. Tectonophysics, 683, 382-392.
Kennett, B. L. N., Sambridge, M., and Williamson, P. R., 1988, Sub- space methods for large scale inverse problems involving multiple parameter classes. Geophys. J. Int., 94, 237–247.
Kustowski, B., Ekstrom, G. and Dziewonski, A. M., 2008, Anisotropic shear wave velocity structure of the Earth’s mantle: a global model. J. Geophys Res.: Solid Earth (1978–2012), 113(B6), doi:10.1029/2007JB005169.
Levshin, A. L., Yanovskaya, T. B., Lander, A. V., Bukchin, B. G., Barmin, M. P., Ratnikova, L. I. and Its, E. N., 1989, Seismic Surface Waves in a Laterally Inhomogeneous Earth, ed. Keilis-Borok, V.I., Kluwer, Norwell, Mass.
Lin, F., Ritzwoller, M. H., Townend, J., Savage, M. and Bannister, S., 2007, Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int., 18, doi:10.1111/j.1365-246X.2007.03414.x.
Lobkis, O. I. and Weaver, R. L., 2001, On the emergence of the Green's function in the correlations of a diffusive field, J. Acoust. Soc. Am., 110, 3011-3017.
Luo, Y., Yang, Y., Xu, Y., Xu, H., Zhao, K. and Wang, K., 2015, On the limitations of interstation distances in ambient noise tomography. Geophysical Journal International, 201(2), 652-661.
Mordret, A., Landes, M., Shapiro, N. M., Singh, S. C., Roux, P. and Barkved, O. I., 2013, Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophys. J. Int., 193(3), 1627–1643.
Nishida, K., Montagner, J. P. and Kawakatsu, H., 2009, Global surface wave tomography using seismic hum. Science, 326(5949), 112–112.
Rawlinson, N. and Sambridge, M., 2005, The fast marching method: An effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36, 341–350.
Rawlinson, N. and Sambridge, M., 2003, Wavefront evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int., 156, 631–647.
Ritzwoller, M. H., Lin, F. C. and Shen, W., 2011, Ambient noise tomography with a large seismic array. Comptes Rendus Geoscience, 343(8), 558–570.
Roux, P., Sabra, K. G., Kuperman, W. A. and Roux, A., 2005, Ambient noise cross-correlation in free space: Theoretical approach. J. Acoust. Soc. Am., 117, 79-84.
Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., Fehler, M. C., 2005, Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys. Res. Lett., 32, L03310.
Saygin, E. and Kennett, B. L. N., 2010, Ambient seismic noise tomography of Australian continent. Tectonophysics, 481(1), 116–125.
Saygin, E. and Kennett, B. L. N., 2012, Crustal structure of Australia from ambient seismic noise tomography (1978–2012). J. Geophys. Res.: Solid Earth, 117(B1), B01304,  doi:10.1029/2011JB008403
Schuster, G. T., Yu, J., Sheng, J. and Rickett, J., 2004, Interferometric/daylight seismic imaging. Geophys. J. Int., 157, 838–852.
Shahabpour, J., 2005, Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24, 405–417.
Shapiro, N. M., Campillo, M., Stehly, L. and Ritzwoller, M. H., 2005, High resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615–1618.
Shapiro, N. M. and Campillo, M., 2004, Emergence of broadband and Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31, L07614.
Shapiro, N. M. and Ritzwoller, M. H., 2002, Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151(1), 88-105.
Shomali, Z. H. and Shirzad, T., 2015, Crustal structure of Damavand volcano, Iran, from ambient noise and earthquake tomography. Journal of Seismology, 19(1), 191-200.
Snieder, R., 2004, extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Phys. Rev. E, 69, 046610.
Trifonov, V. C. and Machette, M. N., 1993, The world Map of Major Active faults project. Annual di Geofisica, 36(3-4), 225-236.
Wapenaar, K., Broggini, P., Slob, E. and Snieder, R., 2013, Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Green's function retrieval, and their mutual relations. Phys. Rev. Lett., 110, 084301.
Weaver, R. L. and Lobkis, O. I., 2001, Ultrasonic without a source: Thermal Fluctuation Correlations at MHz Frequencies. Phys. Rev. Lett., 87(13), 134301-4.
Withers, M. M., Aster, R. C., Young, Ch. J. and Chael, E. P., 1996, High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seism. Soc. Am., 86(5), 1507-1515.
Xia, J., Miller, R. D. and Park, C. B., 1999, Estimation of near-surface shear wave velocity by inversion of Rayleigh waves, Geophysics, 64(3), 691 –700.
Young, M. K., Rawlinson, N., Arroucau, P., Reading, A. M. and Tkalcˇic´, H., 2011, High-frequency ambient noise tomography of southeast Australia: new constraints on Tasmania’s tectonic past. Geophys. Res. Lett., 38, L13313. doi:10.1029/2011GL047971.