آزادی، م.، 1373، مدلسازی معادلات هواشناختی بهروشهای نیمهلاگرانژی، کاربست به معادله تاوایی فشارورد. پایاننامه کارشناسی ارشد هواشناسی، موسسه ژئوفیزیک دانشگاه تهران.
اصفهانیان، و. و اشرفی، خ.، 1382، اعمال روش نیمه لاگرانژی–نیمه ضمنی برای حل معادلات آب کمعمق. نشریه دانشکده فنی، 37، (3).
محبالحجه، ع. ر. و مشایخی، ر.، 1383، نمایش شارشهای تاواری و امواج گرانی در الگوریتمهای حل عددی معادلات بسیط فشارورد منطقهای، مجله فیزیک زمین و فضا، 30 (1)، 37-47.
محمدی، ع.، محبالحجه، ع. ر. و مزرعه فراهانی، م.، 1397، چندجملهای درونیاب هرمیت درجه سوم یکنوا و کاربرد آن در تبدیل مختصات برای مدلهای پیشبینی عددی وضع هوا، مجله انجمن ژئوفیزیک ایران، 12 (3)، 21-38.
Bermejo, R. and Staniforth, A., 1992, The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Monthly Weather Review, 120(11), 2622–2632.
Blossey, P. N. and Durran, D. R., 2008, Selective monotonicity preservation in scalar advection. Journal of Computational Physics, 227(10), 5160–5183.
Boris, J. P. and Book, D. L., 1973, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics, 11(1), 38–69.
Courant, R., Friedrichs, K. and Lewy, H., 1928, Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1), 32–74.
Denner, F. and van Wachem, B. G. M., 2015, TVD differencing on three-dimensional unstructured meshes with monotonicity-preserving correction of mesh skewness. Journal of Computational Physics, 298, 466–479.
Diamantakis, M., 2013, The semi-Lagrangian technique in atmospheric modelling: current status and future challenges. ECMWF Seminar in numerical methods for atmosphere and ocean modelling, pp. 183–200.
Dougherty, R. L., Edelman, A. S. and Hyman, J. M., 1989, Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Mathematics of Computation, 52(186), 471–494.
Dubey, R. K., 2013, Flux limited schemes: Their classification and accuracy based on total variation stability regions. Applied Mathematics and Computation, 224, 325–336.
Durran, D. R., 2010, Numerical Methods for Fluid Dynamics with Applications to Geophysics. Second Edition, Springer, 516 pp.
Fringer, O., Armfield, S. and Street, R., 2005, Reducing numerical diffusion in interfacial gravity wave simulations. International Journal for Numerical Methods in Fluids., 49(3), 301-329.
Fritsch, F. N. and Carlson, R. E., 1980, Monotone piecewise cubic interpolation. SIAM Journal on Numerical Analysis, 17(2), 238–246.
Germaine, E., Mydlarski, L. and Cortelezzi, L., 2013, 3DFLUX: A high-order fully three-dimensional flux integral solver for the scalar transport equation. Journal of Computational Physics, 240: 121–144.
Harris, L. M., Lauritzen, P. H. and Mittal, R., 2011, A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. Journal of Computational Physics, 230(4), 1215–1237.
Harten, A., 1983, High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49(3), 357–393.
Hortal, M., 2004, Overview of the numerics of the ECMWF atmospheric forecast model. Published in the Proceedings of the ECMWF Seminar on “Recent developments in numerical methods for atmospheric and ocean modelling’’, pp. 6–10.
Hundsdorfer, W. and Trompert, R., 1994, Method of lines and direct discretization: a comparison for linear advection. Applied Numerical Mathematics, 13(6), 469–490.
Jiang, G. S. and Shu, C. W., 1996, Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126(1), 202–228.
Kadalbajoo, M. K. and Kumar, R., 2006, A high resolution total variation diminishing scheme for hyperbolic conservation law and related problems. Applied Mathematics and Computation, 175(2), 1556–1573.
Kahaner, D., Moler, C, and Nash, S., 1989, Numerical Methods and Software. Prentice-Hall, Inc., 495 pp.
Lax, P. and Wendroff, B., 1960, Systems of conservation laws. Communications on Pure and Applied Mathematics, 13(2), 217–237.
Lee, J. L., Bleck, R. and MacDonald, A. E., 2010, A multistep flux-corrected transport scheme. Journal of Computational Physics, 229(24), 9284–9298.
Machenhauer, B., Kaas, E. and Lauritzen, P. H., 2009, Finite-volume methods in meteorology. Handbook of Numerical Analysis, 14, 3–120.
Mehrenberger, M. and Violard, E., 2007, A Hermite type adaptive semi-Lagrangian scheme. Applied Mathematics and Computer Science, 17, 329–334
Mohebalhojeh, A. R. and Dritschel, D. G., 2007, Assessing the numerical accuracy of complex spherical shallow-water flows. Monthly Weather Review, 135(11), 3876–3894.
Mohebalhojeh, A. R. and Dritschel, D. G., 2009, The diabatic contour-advective semi-Lagrangian algorithms for the spherical shallow water equations. Monthly Weather Review, 137(9), 2979–2994.
Nair, R. D., Scroggs, J. S. and Semazzi, F. H., 2003, A forward-trajectory global semi-Lagrangian transport scheme. Journal of Computational Physics, 190(1), 275–294.
Nair, R. D. and Lauritzen, P. H., 2010, A class of deformational flow test cases for linear transport problems on the sphere. Journal of Computational Physics, 229(23), 8868–8887.
Priestley, A., 1993, A quasi-conservative version of the semi-Lagrangian advection scheme. Monthly Weather Review, 121(2), 621–629.
Qian, J. H., Semazzi, F. H. and Scroggs, J. S., 1998, A global nonhydrostatic semi-Lagrangian atmospheric model with orography. Monthly Weather Review, 126(3), 747–771.
Rasch, P. J. and Williamson, D. L., 1990, On shape-preserving interpolation and semi-Lagrangian transport. SIAM Journal on Scientific and Statistical Computing, 11(4), 656–687.
Ritchie, H., 1987, Semi-Lagrangian advection on a Gaussian grid. Monthly Weather Review, 115(2), 608–619.
Robert, A., 1981, A stable numerical integration scheme for the primitive meteorological equations. Atmosphere–Ocean, 19(1), 35–46.
Robert, A., 1982, A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteor. Soc. Japan, 60(1), 319–325.
Rõõm, R., Männik, A. and Luhamaa, A., 2007, Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme. Tellus A, 59(5), 650–660.
Skamarock, W. C., Kelmp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. and Powers, J. G., 2005, A description of the advanced research WRF version 2, DTIC Document, NCAR Technical Note NCAR/TN-468+STR.
Smolarkiewicz, P. K. and Pudykiewicz, J. A., 1992, A class of semi-Lagrangian approximation for fluids. J. Atmos. Sci., 49, 2082–2096.
Staniforth, A. and Côté, J., 1991, Semi-Lagrangian integration schemes for atmospheric models—A review. Monthly Weather Review, 119(9), 2206–2223.
Sweby, P. K., 1984, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 21(5), 995–1011.
Temperton, C. and Staniforth, A., 1987, An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Quarterly Journal of the Royal Meteorological Society, 113(477), 1025–1039.
Temperton, C., Hortal, M. and Simmons, A., 2001, A two-time-level semi-Lagrangian global spectral model. Quarterly Journal of the Royal Meteorological Society, 127(571), 111–127.
Verma, S., Xuan, Y. and Blanquart, G., 2014, An improved bounded semi-Lagrangian scheme for the turbulent transport of passive scalars. Journal of Computational Physics, 272, 1–22.
Waterson, N. P. and Deconinck, H., 2007, Design principles for bounded higher-order convection schemes––A unified approach. Journal of Computational Physics, 224(1), 182–207.
Williamson, D. L., and Olson, J. G., 1998, A comparison of semi-Lagrangian and Eulerian polar climate simulations. Monthly weather review, 126(4), 991–1000.
Wolberg, G. and Alfy, I., 2002, An energy-minimization framework for monotonic cubic spline interpolation. Journal of Computational and Applied Mathematics, 143, 145-188.
Zalesak, S. T., 1979, Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31(3), 335–362.
Zhang, D., Jiang, C., Liang, D. and Cheng, L., 2015, A review on TVD schemes and a refined flux-limiter for steady-state calculations. Journal of Computational Physics, 302, 114–154.