Comparing runoff and sediment production in three land use in Fandoghlu area, Ardabil province

Document Type : Research Article

Authors

1 Department of watershed, Faculty of Agricultural and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: n.moradikeia@gmail.com

2 Corresponding Author, Department of Natural Resources, Faculty of Agricultural and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: esmaliouri@uma.ac.ir

3 Department of Soil Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: shasghari@uma.ac.ir

4 Department of watershed, Faculty of Natural Resource, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran. E-mail: m.golshan20@gmail.com

Abstract

The process of converting rainfall into runoff in a region is complex and is affected by many different factors. There is a close relation between land use and erosion. Soil erosion involves the separation and transport of soil particles by runoff. Therefore, runoff production is an important process that is related to soil loss and environmental effects of agricultural operations due to its involvement in nutrient loss. As a result, it is necessary to study the amount of runoff produced as one of the main processes of soil erosion.Rainfall simulator allow repeated measurements in different fields to determine the factors affecting runoff and erosion. Despite the challenges, the use of simulators is common worldwide due to its many benefits in various fields of soil erosion and sediment production. In Iran this method was used in many researches with different targets. Kavian et al (2019) simulated the effect of herbaceous residues on runoff production, Golshan et al (2018) using the rainfall simulator compared the SWAT model and Regression model. In other countries other research can be mentioned the researches of Biddoccu et al (2016), Zhang et al (2018a) and Wang et al (2018). For this purpose, in the present study, which was carried out in one of the forest areas in the east of Ardabil province, called Fandoghlu forest area, the amount of runoff and sediment from the rainfall was measured and compared in different land uses using a rainfall simulator machine.  In this study, the relationship between land use and runoff and sediment production was investigated in the Fandoghlu forest with 4378 ha area, using a rainfall simulator machine. The used rainfall simulator has 1 m2 area with the ability to adjust the intensity and duration of rainfall. The rainfall simulator machine was installed at 104 points with 21.867 mm / hr. rainfall intensity during the 15 mints in the three different land use consisting of forest, rang and agriculture. Soil sampling was performed from each land use from a depth of 0-20 cm. 34 samples were taken for forest use and 35 samples of intact and untouched soil were collected for each of the agricultural and rangeland uses, and a total of 104 soil samples were collected. The location of the points was recorded via the Global Positioning System (GPS).Using laboratory soil samples, parameters of initial soil moisture, bulk density, organic carbon, soil particle size distribution, true bulk density, total porosity, saturated hydraulic conductivity, saturated moisture, field capacity, permanent and susceptible wilting point usage and weight average of aggregate diameter were measured. The mean values of soil bulk density in forest, rangeland and agricultural uses were 0.881, 1.067 and 1.355 g / cm3, respectively. In rangeland use, the increase in specific gravity of the soil relative to the forest can be attributed to the kicking of livestock due to uncontrolled grazing (Ferreras et al., 2006). The mean values of true specific gravity and total soil porosity in forest were obtained. The rangeland and agricultural uses are equal to 1.905, 2.018 and 2.162, and 53.60, 46.46, 37.09 respectively. The reason for the reduction of true specific gravity in forest use is because the organic part of the soil inherently has a small true specific gravity. As by increasing the share of soil organic matter, the actual specific gravity decreases (Zhang et al., 2018b). In forest, rangeland and agricultural uses, the amount of runoff was equal to 868.5, 925 and 1425 ml/m2. Also, the amount of sediment concentration in each of the land uses was 1.937, 8.889 and 44.222, respectively. The results showed that vegetation, slope, soil characteristics and land use change have a significant effect on runoff and sediment components in the study area. Field studies and direct statistics of harvesting are very important in watershed management and estimating runoff and sediment production. The rainfall simulator used in this research can be transported to difficult areas that can provide integrated information from the watershed. The distribution of soil particle size on runoff and sediment components showed that there is a significant difference between different amounts of silt, clay and sand in each of the land uses and runoff volume. So that the amount of clay and silt from the forest to the pasture and arable land is reduced and the amount of sand is increased. Silty soils have low permeability due to low adhesion and porosity and as a result, more runoff volume. Therefore, land use management in this area can play a very important role in reducing runoff and fertile soil.

Keywords

Main Subjects


اسمعلی، ا. و عبدالهی، خ. (1390). آبخیزداری و حفاظت خاک. چاپ دوم. اردبیل: انتشارات دانشگاه اردبیل، ص 546.
بهتری، م. و واعظی، ع. (1396). تاثیر مقدار رطوبت اولیه خاک بر تولید رواناب و هدر رفت خاک در بافت‌های مختلف تحت باران شبیه‌سازی شده. علوم و مهندسی آبخیزداری ایران، 11(39)، 19-11.
ذولفقاری، ع.ا. و حاج‌عباسی، م.‌ ع. (1387). تأثیر تغییر کاربری اراضی بر خصوصیات فیزیکی و ابگریزی خاک در مراتع فریدون‌شهر و جنگل‌های لردگان. آب و خاک (علوم و صنایع کشاورزی)، 22 (2)، 262-251.
رستگار، ش.، بارانی، ح.، دریجانی، ع. و بردی شیخ، و. (1392). مقایسه میزان هدررفت خاک و رسوب برخی سازندهای زمین‌شناسی در گرادیان‌های پوشش گیاهی با استفاده از شبیه‌ساز باران. مرتع و آبخیزداری، 67 (19)، 44-31.
صادقی، س.ح.، مصطفی‌زاده، ر. و سعدالدین، ا. (1394). پاسخ رسوب نمود و حلقه‌های سنجه‌رسوب به نوع و توزیع مکانی کاربری اراضی. مهندسی و مدیریت آبخیز، 7 (1)، 6-15.
عسگری، ا.، اسمعلی‌عوری.، مصطفی‌زاده، ر. و احمدزاده، غ. (1397). تغییرات مکانی رواناب، رسوب و آستانه شروع رواناب در حوزه آبخیز قره‌شیروان اردبیل. فیزیک زمین و فضا، 44(3)، 713-697.
عسگری، ا.، اسمعلی‌عوری.، مصطفی‌زاده، ر. و احمدزاده، غ. (1399). تاثیر سازندهای مختلف زمین‌شناسی حوضه آبریز قره‌شیروان اردبیل بر تولید رواناب و رسوب با استفاده از شبیه‌ساز باران. هیدروژئومورفولوژی، 6(22)، 203-177.
علیزاده، ا. (1373). روابط شدت – تناوب بارندگی در مشهد. مجله علوم و صنایع کشاورزی، 1(8)، 66-55.
فرهودی، م.ح.، بهشتی، ع.، آقابیگی، س.، بذرافشان، ا. و اسماعیلی‌پور، ی. (1397). تاثیرپذیری رواناب و رسوب از افزودنی‌های ورمی‌کمپوست و کاه و کلش. جغرافیا و پایداری محیط، 29(1)،12-1.
قهرمان، ب. و سپاسخواه، ع. (1369). تخمین رابطه شدت و تناوب بارندگی در ایران با استفاده از باران یک ساعته ده‌ساله. مجموعه مقالات سومین کنگره بین‌المللی مهندسی راه و ساختمان ایران 24-28 اردیبهشت دانشکده مهندسی، دانشگاه شیراز.
کاویان، ع.، عسگریان، ر.، جعفریان جلودارلو، ز. و بهمنیار، م.ع. (1398). اثر خصوصیات خاک بر تولید رواناب و رسوب در مقیاس مزرعه (مطالعه موردی: بخشی از اراضی کشاورزی اطراف شهرستان ساری). دانش آب و خاک، 4(239)، 57-45.
کیوان بهجو، ف.، زندی اصفهان، ا. و محبوب، ب. (1395). مطالعه تاثیر فعالیت‌های تفرجی بر تغییرات خاک در اکوسیستم مرتعی تالش. تحقیقات مرتع و بیابان ایران، 23(2)، 356-344.
گلشن، م.، کاویان، ع.، اسمعلی، ا. و زیگلر، ا. (1397). مدل‌سازی تولید رواناب و رسوب با استفاده از خصوصیات هیدروژئومورفولوژیک در حوزه آبخیز سامیان، استان اردبیل. مجله علوم و مهندسی آبخیزداری ایران، 12(43)، 127-116.
یوسف‌پور، ر.، مهاجر، م. و ثاقب، خ. (1383). بررسی توالی توده‌های راش در جنگل‌های فندقلو اردبیل. مجله منابع طبیعی ایران. 57 (4)، 714-703.
Asgari, E., Hoseini, S. Z., Mostafazadeh, R., & (2021). Determination of the Relationship and Spatial Variations of Discharge and Suspended Sediment Values in Watersheds of Ardabil Province. Geography and Development, 18(61), 143-148.
Bauer, A., & Blak, AL. (1992). Organic carbon effects on available water capacity of three soil textural groups. Journal Soil Science Society of American, 56(1), 248 -254.
Begueria, S., Lopez-Moreno, J. I., Gomez-Villar, A., Rubio, V., Lana-Renault, N., & Garcia- Ruiz, J. M. (2006). Fluvial adjustments to soil erosion and plant cover chenges in the central Spanish Pyrenees. Geografiska Annaler. Series A, Physical Geography, 88 A, 177–186.
Biddoccu, M., Ferraris, S., Opsi, F., & Cavallo, E. (2016). Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil and Tillage Research, 155, 176-189.
Bissonnais, Y. L., Monitier, C., Jamagne, M., Daroussin, J., & King, D. (2001). Mapping erosion risk for cultivated soil in France. Catena, 46, 207-220.
Blake, G. R., & Hartge, K. H. (1986). Bulk density, P 363-375. In: Klute, A. (Ed). Methods of Soil Analysis. Part 1. 2nd ed. Agronomy. Monograph. 9. ASA, Madison, WI.
Chen, K. Y., Liu, Y. T., Hsieh, Y. C., & Tzou, Y. M. (2020). Organic fragments newly released from heat-treated peat soils create synergies with dissolved organic carbon to enhance Cr (VI) removal. Ecotoxicology and Environmental Safety, 201, 110800.‏
Collins, H. P., Paul, E. A., Paustian, K., & Elliott, E. T. (2019). Characterization of soil organic carbon relative to its stability and turnover. In Soil organic matter in temperate agroecosystems, 51-72. CRC Press.‏
Danielson, R. H., & Suterland, P.L. (1986). Porosity. In: Klute, A (Ed.). Methods of.soil analysis. Part 1. Physical and Mineralogical Methods. AgronomyMonograph, 9. 2nd edition, ASA and SSSA, Madison, WI. 443 -460.
Esmali Ouri, A., Golshan, M., Janizadeh, S., Cerdà, A., & Melesse, A. M. (2020). Soil erosion susceptibility mapping in Kozetopraghi catchment, Iran: a mixed approach using rainfall simulator and data mining techniques. Land, 9(10), 368.‏
Ferreras, L., Gumez, E., Toresani, S., Firpo, I., & Rotondo, R. (2006). Effects of organic amendments on some physical. chemical and biological properties in a horticultural soil Bio resource Technology, 97, 635-640.
Golshan, M., Kavian, A., Esmali Ouri, A., & Ziegler, A.D. (2018). Modeling runoff and sediment yield using of Hydro-Geomorphologic characters in Samian watershed, Ardabil Province. Iranian Journal of watershed Management Science, 12(43), 116-127.
Jacob, H., & Clarke, G. (2002). Aggregate stability and size distribution. In: Klute, A (Ed.). Methods of soil analysis, Part 4, Physical Method. Soil Scienci of American, Inc, Madison, Wisconsin, USA. 1692 p.
Jin, Z., Ping, L., & Wong, M. (2020). Systematic relationship between soil properties and organic carbon mineralization based on structural equation modeling analysis. Journal of Cleaner Production, 277, 123338.‏
Jordan, A., & Martines-Zavala, L. (2008). Soil loss and runoff rates on unpaved forest roads in southern Spain after simulated rainfall. Forest Ecology and management, 255, 913-919.
Lang, R. D. (1990). The effect of ground cover on runoff and erosion from plots at scone, New South Wales. Unpubl MS Thesis, School of Earth Sciences, Macquarie University, NSW, Australia.
Molina, A., Govers, G., Vanacker, V., Poesen, J., Zeelmaekers, E., & Cisneros, F. (2007). Runoff generation in a degraded Andean ecosystem: Interaction of vegetation cover and land use. Catena, 71, 357 – 370.
Mosavi, A., Golshan, M., Choubin, B., Ziegler, A. D., Sigaroodi, S. K., Zhang, F., & Dineva, A. A. (2021). Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds. Scientific Reports, 11(1), 1-14.‏
Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. PP 539-579. In: Page, AL., Miller, RH. and Keeny, DR. (Eds.), Methods of Soil Analysis, Part 2, Soil Science Society of American, Madison, WI.
Ouyang, W., Hao, F., Skidmor, A. K., & Taxopeus, A.G. (2010). Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. Science of the Total Environment, 409, 396- 403.
Seeger, M. (2007). Uncertainty of factor determining runoff and erosion processes as quantified by rainfall simulations. Catena 71, 56-67.
Sheridan, G., Noske, P., Lane, P., & Sherwin, C. (2008). Using rainfall simulation and site measurement to predict annul inter rill erodibility and phosphorus generation rate from unsealed forest roads: Validation against in-site erosion measurements. Catena 73, 49-62.
Wang, Q., Li, C., Pang, Z., Wen, H., Zheng, R., Chen, J., & Que, X. (2018). Effect of grass hedges on runoff loss of soil surface-applied herbicide under simulated rainfall in Northern China. Agriculture, Ecosystems & Environment, 253, 1-10.
Wildhaber, Y. S., Banninger, D., Burr, K., & Alewell, C. (2011). Evaluation and application of a portable rainfall simulator on Subalpain grassland, Catena, 75, 2-7.
Zhang, X., Li, Z., Li, P., Tang, S., Wang, T., & Zhang, H. (2018a). Influences of sand cover on erosion processes of loess slopes based on rainfall simulation experiments. Journal of Arid Land, 10(1), 39-52.
Zhang, X., Xin, X., Zhu, A., Yang, W., Zhang, J., Ding, S., & Shao, L. (2018b). Linking macroaggregation to soil microbial community and organic carbon accumulation under different tillage and residue managements. Soil and Tillage Research, 178, 99-107.‏
Zhou, P., Lukkanen, O., Tokalo, T., & Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75, 319-325.