آقانباتی، س. ع. (1383). زمین شناسی ایران، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور.
اجل لوئیان، ر.، دادخواه، ر. و حسین میرزایی، ز. (1388). کاربرد زمینشناسی مهندسی در تونلها، انتشارات فرهیختگان علوی.
حفیظی، م. ک.، عباسی، ب. و اشتری تلخستانی، ا. (1389). بررسی زمین لغزش گردنه صائین اردبیل به منظور تامین ایمنی راه با روش توموگرافی الکتریکی دوبعدی و سه بعدی. مجله فیزیک زمین و فضا، 36(1)، 17-28.
درویش زاده، ع. (1385). زمینشناسی ایران، چینهشناسی، تکتونیک، دگرگونی و ماگماتیسم، انتشارات امیرکبیر.
Bruno, F., & Marillier, F. (2000). Test of highresolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps. Surv. Geophys, 21, 333–348.
Capizzi, P., & Martorana, R. (2014). Integration of constrained electrical and seismic tomographies to study the landslide affecting the cathedral of Agrigento. J Geophys Eng, 11(4), 045009.
Choobbasti, A.J., Rezaei, S., & Farrokhzad, F. (2013). Evaluation of site response characteristics using microtremors. Gradev, 65, 731–741.
Cruden D.M., & Varnes D. J. (1996). Landslide types and processes. In: Turner A.K.; Shuster R.L. Landslides: Investigation and Mitigation. Transport. Res. Bd. Spec. Rep, 247, 36-75.
Dahlin, T., & Bing, Z. (2001). A numerical comparison of 2D resistivity imaging with eight electrode arrays, Department of Geotechnology, Lund University, Box.118, S-221 00, lund, Sweden.
De Bari, C., Lapenna, V., Perrone, A., Puglisi, C., & Sdao, F. (2011). Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata region, southern Italy). Geomorphology, 133, 34–46.
Devi, A., Israil, M., Anbalagan, R., & Gupta, PK. (2017). Subsurface soil characterization using geoelectrical and geotechnical investigations at a bridge site in Uttarakhand Himalayan region. J Appl Geophys, 144, 78–85.
Fressard, M, Maquaire, O., Thiery, Y., Davidson, R., & Lissak, C. (2016), Multimethod characterisation of an active landslide: case study in the pays d'Auge plateau (Normandy, France). Geomorphology, 270, 22–39.
Grandjean, G., Gourry, J.C., Sanchez, O., Bitri, A., & Garambois, S. (2011). Structural study of the Ballandaz landslide (French alps) using geophysical imagery. J Appl Geophys, 75(3), 531–542.
Guerriero, L., Bertello, L., Cardozo, N., Berti, M., Grelle, G., & Revellino, P. (2017). Unsteady sediment discharge in earth flows: a case study from the mount Pizzuto earth flow, southern Italy. Geomorphology, 295, 260–284.
Hack, R. (2000), Geophysics for slope stability, Surveys in Geophysics, 21(4), 423-448.
Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides: a review, Bulletin de la Société géologique de France, 178(2), 101-112.
Kawabata, D., & Bandibas, J. (2009). Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology, 113, 97–109.
Kolay, P.K., Burra, S.G., & Kumar, S. (2018). Effect of salt and NAPL on elec trical resistivity of fine-grained soil-sand mixtures. Int J Geotech Eng, 12(1), 13–19.
Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., & Sdao, F. (2005). D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy, Geophysics, 70(3), B11-B18.
Ling, C., Xu, Q., Zhang, Q., Ran, J., & Lv, H. (2016). Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). J Appl Geophys, 131, 154–162.
Loke, M.H., & Barker, R.D. (1996). Rapid leastsquares inversion of apparent resistivity pseudosections by a quasi-Newton method, Geophys Prospect, 44(1), 131–152.
Loke, M.H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo software, Penang, Malaysia.
Loke, M.H., Chambers, J.E., Rucker, D.F., Kuras, O., & Wilkinson, P.B. (2013). Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys, 95, 135–156.
Loke, M.H. (2001). Electrical imaging surveys for environmental and engineering studies, A Practical Guide to 2-D and 3-D Surveys: RES2DINV Manual, IRIS Instruments, www.iris-instrument.com.
McCann, D., & Forster, A. (1990). Reconnaissance geophysical methods in landslide investigations, Engineering Geology, 29(1), 59-78.
Merritt, A.J., Chambers, J.E., Murphy, W., Wilkinson, P.B., West, L.J., Gunn, D.A., Meldrum, P.I., Kirkahm, M., & Dixon, N. (2014). 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides, 11, 537–550.
Oh, S., & Sun., C.G. (2008). Combined analysis of electrical resistivity and geotechnical SPT blow counts for the safety assessment of fill dam. Environ Geol, 54, 31–42.
Patella, D. (1997). Introduction to ground surface self-potential tomography, Geophys. Prospect, 45, 653– 681.
Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E., & Sdao, F. (2004). High-resolution electrical imaging of the Varco d’Izzo earthflow (southern Italy). Journal of Applied Geophysics, 56, 17-29.
Perrone, A., Zeni, G., Piscitelli, S., Pepe, A., Loperte, A., Lapenna, V., & Lanari, R.)2006). Joint analysis of SAR interferometry and electrical resistivity tomography surveys for investigating ground deformation: the case-study of Satriano di Lucania (Potenza, Italy). Eng. Geol. 88, 260-273.
Perrone, A., Lapenna, V., & Piscitelli, S., (2014). Electrical resistivity tomography technique for landslide investigation: a review. Earth-Sci Rev, 135, 65–82.
Rezaei, S., & Choobbasti, A.J. (2017). Application of microtremor measurements to a site effect study. Earthq Sci. https://doi.org/10.1007/ s11589-017-0187-2.
Rezaei, S., Choobbasti, A.J., Soleimani, & Kutanaei, S. (2015). Site effect assessment using microtremor measurement, equivalent linear method and artificial neural network (case study: Babol, Iran). Arab J Geosci, 8, 1453–1466.
Rezaei, S., Shooshpasha, I., & Rezaei, H. (2018). Evaluation of landslides using ambient noise measurements (case study: Nargeschal landslide). Int J of Geotech Eng, https://doi.org/10.1080/19386362.2018.1431354.
Uhlemann, S., Wilkinson, P.B., Maurer, H., Wagner, F.M., Johnson, T.C., & Chambers, J.E. (2018). Optimized survey design for electrical resistivity tomography: combined optimization of measurement configuration and electrode placement. Geophys J Int, https://doi.org/10. 1093/gji/ggy128
Varnes, D.J. (1978). Slope movement types and processes, in R.L. Schuster and R.J. Krizek (eds.), Landslides: Analysis and Control, Nat’l. Res. Council, Wash., D.C., Transport. Res. Bd. Spec. Rep, 176, 11-33.
www.ngdir.ir.
Zhou, W., Beck, B. F., & Adams, A. L.)2002). Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology, 42, 922-928.
Yannah, M., Martens, K., Van Camp M., & Walraevens, K. (2017). Geophysical exploration of an old dumpsite in the perspective of enhanced landfill mining in Kermt area, Belgium. B Eng Geol Eenviron. https:// doi.org/10.1007/s10064-017-1169-2.