Bjerhammar, A. (1969). On the boundary value problem of physical geodesy. Tellus, 21(4), 451-516, doi: 10.1111/j.2153-3490.1969.tb00460.x.
Cooper, G. (2004). The stable downward continuation of potential field data. Exploration Geophysics, 35(3), 260-265. doi: 10.1071/EG04260.
Fedi, M., & Florio, G. (2002). A stable downward continuation by using the ISVD method. Geophysical Journal International, 151(1), 146-156. doi: 10.1190/1.1450821.
Foroughi, I., Vaníček, P., Kingdon, R.W., Goli, M., Sheng, M., Afrashte, Y., Novak, P., & Santos, C.M. (2018). Sub-centimetre geoid. Journal of Geodesy, 92(2), 111-123. doi: 10.1007/s00190-017-1075-5.
Forsberg, R. (1987). A new covariance model for inertial gravimetry and gradiometry. Journal of Geophysical Research: Solid Earth, 92(B2), 1305–1310.
Goli, M., Foroughi, I., & Novak, P. (2018). On estimation of stopping criteria for iterative solutions of gravity downward continuation. Canadian Journal of Earth Sciences, 55(4), 397-405. doi: 10.1139/cjes-2017-0208.
Goli, M., Najafi-Alamdari, M., & Vaníček, P. (2011). Numerical behaviour of the downward continuation of gravity anomalies. Studia Geophysica et Geodaetica, 55(2), 191-202. doi: 10.1007/s11200-011-0011-8.
Li, X., Huang J., Klees, R., Forsberg, R., Willberg, M., Slobbe, D.C., Hwang, C., & Pail, R. (2022). Characterization and stabilization of the downward continuation problem for airborne gravity data. Journal of Geodesy, 96(18), doi: 10.1007/s00190-022-01607-y.
Hirt, C., Featherstone, W.E., & Claessens, S.J. (2011). On the accurate numerical evaluation of geodetic convolution integrals. Journal of Geodesy, 85(8), 519-538. doi: 10.1007/s00190-011-0451-5.
Heiskanen, W.A., & Moritz, H. (1967). Physical Geodesy. W.H. Freeman and Company, San Francisco, 364 p.
Huang, J., Sideris, M.G., Vaníček, P., & Tziavos, I.N. (2003). Numerical investigation of downward continuation techniques for gravity anomalies. Bollettino di Geodesia e Scienze Affini, 62(1), 33-48.
Huang, J., Vaníček, P., & Novák, P. (2000). An alternative algorithm to FFT for the numerical evaluation of Stokes's integral. Studia Geophysica et Geodaetica, 44(4), 374-380. doi: 10.1023/A:1022160504156.
Long, L.T., & Kaufmann, R.D. (2013). Acquisition and analysis of terrestrial gravity data. Cambridge University Press.
Martinec, Z. (1996). Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. Journal of Geodesy, 70(12), 805-828. doi: 10.1007/s001900050069.
Molodenskij, M.S., Eremeev, V.F., & M.I., Yurkina. (1962). Method for Study of the External Gravitation Field and Figure of the Earth. Translated from Russian, Israel Program for Scientific Translations, Jerusalem.
Moritz, H. (1980). Advanced physical geodesy. Herbert Wichmann Verlag.
Pašteka, R., Kušnírák, D., & Karcol, R. (2018). Matlab tool REGCONT2: effective source depth estimation by means of Tikhonov’s regularized downwards continuation of potential fields. Contributions to Geophysics and Geodesy, 48(3), 205-222. doi: 10.2478/congeo-2018-0010.
Pavlis, N.K., Holmes, S.A., Kenyon, S.C., & Factor, J.K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4). doi: 10.1029/2011JB008916.
Sajjadi, S., Martinec, Z., Prendergast, P., Hagedoorn, J., & Šachl, L. (2021). The stability criterion for downward continuation of surface gravity data with various spatial resolutions over Ireland. Studia Geophysica et Geodaetica, 65(1), 59-76. doi: 10.1007/s11200-020-0769-7.
Sebera, J., Šprlák, M., Novák, P., Bezděk, A., & Vaľko, M. (2014). Iterative Spherical Downward Continuation Applied to Magnetic and Gravitational Data from Satellite. Surveys in Geophysics, 35(4), 941-958. doi: 10.1007/s10712-014-9285-z.
Sideris, M.G. (1987). Spectral methods for the numerical solution of Molodensky's problem. University of Calgary, Ph.D. thesis.
Sun, W., & Vaníček, P. (1998). On some problems of the downward continuation of the 5' × 5' mean Helmert gravity disturbance. Journal of Geodesy, 72(7), 411-420. doi: 10.1007/s001900050216.
Vaníček, P., Sun, W., Ong, P., Martinec, Z., Najafi, M., Vajda, P., & ter Horst, B. (1996). Downward continuation of Helmert's gravity. Journal of Geodesy, 71(1), 21-34. https://doi.org/10.1007/s001900050072.
Vaníček, P., Novák, P., Sheng, M., Kingdon, R., Janák, J., Foroughi, I., Martinec, Z., & Santos, M. (2017). Does Poisson’s downward continuation give physically meaningful results?. Studia Geophysica et Geodaetica, 61(3), 412-428. doi: 10.1007/s11200-016-1167-z.
Xu, S.-z., Yang, J., Yang, C., Xiao, P., Chen, S., & Guo, Z. (2007). The iteration method for downward continuation of a potential field from a horizontal plane. Geophysical Prospecting, 55(6), 883-889. doi: 10.1111/j.1365-2478.2007.00634.x.
Zeng, X., Liu, D., Li, X., Chen, D., & Niu, C. (2015). An improved regularized downward continuation of potential field data. Journal of Applied Geophysics, 106, 114-118. Doi: 10.1016/j.jappgeo.2015.02.011.
Zeng, X., Li, X., Su, J., Liu, D., & Zou, H. (2013). An adaptive iterative method for downward continuation of potential-field data from a horizontal plane. Geophysics, 78(4), J43-J52. doi: 10.1190/1.3237432.
Zhang, C., Lü, Q., Yan, J., & Qi, G. (2018). Numerical solutions of the mean-value theorem: new methods for downward continuation of potential fields. Geophysical Research Letters, 45(8), 3461-3470. doi: 10.1002/2018GL076995.
Zhang, H., Ravat, D., & Hu, X. (2013). An improved and stable downward continuation of potential field data: The truncated Taylor series iterative downward continuation method. Geophysics, 78(2), J75-J86. 10.1190/geo2012-0145.1.
Zhang, Y., Wong, Y.S., & Lin, Y. (2016). BTTB–RRCG method for downward continuation of potential field data. Journal of Applied Geophysics, 126, 74-86, doi: 10.1016/j.jappgeo.2015.12.001.
Zhao, Q., Xu, X., Forsberg, R., & Strykowski, G. (2018). Improvement of Downward Continuation Values of Airborne Gravity Data in Taiwan. Remote Sensing, 10, 12.
Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 66. doi: 10.1007/s00190-020-01398-0.