Balmino, G., Vales, N., Bonvalot, S., & Briais, A. (2012). Spherical Harmonic modeling to ultrahigh degree of Bouguer and isostatic anomalies. J. geod, 86, 499–520. DOI: 10.1007/s00190-011
Bosch, W. (2000). On the Computation of Derivatives of Legendre Functions. Phys. Chem. Earth (A), 25(9-1 I), 655-659.
Bucha, B., & Janák, J. (2013). A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders. Computers & Geosciences, 56, 186-196, https://doi.org/10.1016/j.cageo.2013.03.012.
Clenshaw, C. W. (1955). A note on the summation of Chebyshev series. Mathematics of Computation, 9(51), 118–118. doi:10.1090/s0025-5718-1955-0071.
Colombo, O.L. (1981). Numerical methods for harmonic analysis on the sphere. Report No. 310, Department of Geodetic Science and Surveying”, The Ohio State University, Columbus, Ohio, 139pp,1981.
Cunningham, L.E. (1970). On the computation of the spherical harmonic terms needed during the numerical integration of the orbitalmotion of an artificial satellite. Celestial Mech, 2, 207–216.
Fantino, E.m & Casoto, S. (2009). Methods of harmonic synthesis for global geopotential models and their fi rst-, second- and third-order gradients. J. Geod., 83, 595–619. DOI: 10.1007/s00190-008-0275-0.
Foerste, C., Bruinsma, S.L., Abrykosov, O. Lemoine, J., Marty, J., Flechtner, F., Balmino, G., Barthelmes, F., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/icgem.2015.1.
Fukushima, T. (2018). Fast computation of sine/cosine series coefficients of associated Legendre function of arbitrary high degree and order.
Journal of Geodetic Science, 8(1), 162-173.
https://doi.org/10.1515/jogs-2018-0017.
Fukushima, T. (2012). Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers. J. Geod, 86, 271–285. https://doi.org/10.1007/s00190-011-0519-2.
Goli, M., Foroughi, I., & Novák, P. (2022). New methods for numerical evaluation of ultra-high degree and order associated Legendre functions. Stud Geophys Geod, 66, 81–97. https://doi.org/10.1007/s11200-022-0830-9.
Heiskanen, W.A., & Moritz, H. (1967). Physical geodesy. San Francisco, WH Freeman.
Holmes, S. A., & Featherstone, W.E. (2002). A unified approach to the Clenshaw summation and the recursive computation of very degree and order normalised associated Legendre functions. Journal of Geodesy, 76, 279-299.
IEEE, (2008) Computer Society: IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, (2008).
Jekeli, C., Lee, K. J. & Kwon, J. H. (2007). On the computation and approximation of ultra-high-degree spherical harmonic series. J. Geod., 81, 603–615. DOI: 10.1007/s00190-006-0123-z.
Métris, G., Xu, J., & Wytrzyszczak, I. (1998). Derivatives of the Gravity Potential with Respect to Rectangular Coordinates. Celestial Mechanics and Dynamical Astronomy, 71, 137–151 (1998). https://doi.org/10.1023/A:1008361202235.
Novikova, E., & Dmitrenko, A. (2016). Problems and methods of calculating the Legendre functions of arbitrary degree and order. Geodesy and Cartography, 65(2), 283-312. doi:10.1515/geocart-2016-0017.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2008). An Earth Gravitational Model to Degree 2160: EGM2008. Presented at European Geosciences Union 2008 General Assembly, Vienna, Austria, 2008.
Pines, S. (1973). Uniform representation of the gravitational potential and its derivatives. AIAA J., 11, 1508–1511.
Rexer, M., & Hirt, C. (2015). Ultra-high-degree surface spherical harmonic analysis using the Gauss–Legendre and the Driscoll/Healy Quadrature theorem and application to planetary topography models of Earth, Mars and Moon.
Surv Geophys, 36(6), 803–830.
https://doi.org/10.1007/s10712-015-9345-z.
Smith, J.M., Olver, F., & Lozier, D. (1981). Extended-range arithmetic and normalized Legendre polynomials. ACM Trans. Math. Softw., 7, 93-105. DOI: 10.1145/355934.355940.
Šprlák, M. (2011). On the numerical problems of spherical harmonics: Numerical and algebraic methods avoiding instabilities of the associated legendre’s functions. Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 136(5), 310-320.
Wittwer, T., Klees, R., Seitz, K. & Heck, B. (2008). Ultra-high degree spherical harmonic analysis and synthesis using extended-range arithmetic. Journal of Geodesy., 82(4-5), 223-229, 2008.
Xing, Z., Li, S., Tian, M., Fan, D., & Zhang, C. (2020). Numerical experiments on column-wise recurrence formula to compute fully normalized associated Legendre functions of ultra-high degree and order. Journal of Geodesy, 94(1), 2.
Yu, J., Wan, X. & Zeng Y. (2011). The integral formulas of the associated Legendre functions. J. Geod., 86(6), 467-473.