قادر، س.؛ یازجی، د.؛ سلطانپور، م. و نعمتی، م. ح. (1394). به کارگیری یک سامانه همادی توسعه دادهشده برای مدل WRF جهت پیش بینی میدان باد سطحی در محدوده خلیج فارس. هیدروفیزیک، 1(1)، 41-54.
مرادیان، ف.؛ قادر، س. و رضازاده، م. (1399). بررسی عملکرد سامانه همادی چند فیزیکی مدل میان مقیاس WRF جهت شبیه سازی بارش در مناطق مرکزی ایران. مجله ژئوفیزیک ایران، 14(1)، 18-38.
آزادی، م. و محمدی، س. ع. (1398). پیشبینی احتمالاتی دماهای کمینه و بیشینه روزانه برای ایران با استفاده از سامانه همادی دو عضوی. نیوار، 43، 57-66.
دهملائی، م.؛ رضازاده، م. و آزادی، م. (1400). بررسی پیشبینی احتمالاتی سرعت باد ده متری با استفاده از دو روش پسپردازش همادی. پژوهشهای اقلیم شناسی، 48، 69-84..
فتحی، م.؛ آزادی، م.؛ کمالی، غ. ع. و مشکوتی، ا. ح. (1397). واسنجی پیشبینی احتمالاتی بارش برونداد سامانه همادی به روش میانگینگیری بایزی روی ایران. نشریه هواشناسی و علوم جو، 1(2)، 114-129.
محمدی، س. ع. و آزادی، م. (1401). بررسی تأثیر تعداد اعضای یک سامانه همادی بر دقت پیش بینی بارش. نیوار، 46، 73-84.
Baran, S., & Möller, A. (2015). Joint probabilistic forecasting of wind speed and temperature using Bayesian model averaging. Environmetrics, 26, 120–132.
Baran, S., & Möller, A. (2017). Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature. Meteorol. Atmos. Phys., 129, 99–112.
Buizza, R. (2018). Ensemble forecasting and the need for calibration. In Vannitsem, S., Wilks, D. S., & Messner J. W., (Eds.), Statistical Postprocessing of Ensemble Forecasts. Elsevier.
Chaloulos, G., & Lygeros, J. (2007). Effect of wind correlation on aircraft conflict probability. J. Guid. Control Dynam., 30, 1742–1752.
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., & Wilby, R. (2004). The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeorol., 5, 243–262.
Feldmann, K., Scheuerer, M., & Thorarinsdottir, T. L. (2015). Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression. Mon. Weather Rev., 143, 955–971.
Gneiting, T. (2014). Calibration of medium-range weather forecasts. ECMWF Technical Memorandum No. 719. Available at: http://www.ecmwf.int/sites/default/files/elibrary/2014/9607-calibration-medium-range [Accessed on 20 June 2022]
Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc., Ser. B 69: 243–268.
Gneiting, T. & Raftery, A. E. (2007). Strictly proper scoring rules, prediction and estimation. J. Amer. Statist. Assoc. 102, 359–378.
Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev., 133, 1098–1118.
Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L., & Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder). Test, 17, 211–264.
Gupta, H. (1974). On permutation cubes and Latin cubes. Indian Journal of Pure and Applied Mathematics, 5, 1003–1021.
Lakatos, M., Lerch, S., Hemri, S. & Baran, S. (2023). Comparison of multivariate post-processing methods using global ECMWF ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 149(752), 856–877.
Lang, M. N., Mayr, G. J., Stauffer, R., & Zeileis, A. (2019). Bivariate Gaussian models for wind vectors in a distributional regression framework. Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132.
Mohammadi, S. A., Rahmani, M., & Azadi, M. (2016). Meta-heuristic CRPS minimization for the calibration of short range probabilistic forecasts. Meteorology and Atmospheric Physics, 128, 429–440.
Möller, A., Lenkoski, A., & Thorarinsdottir, T. L. (2013). Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Q. J. Roy. Meteor. Soc., 139, 982–991.
Pinson, P., & Tastu, J. (2013). Discrimination ability of the Energy score, Technical Report DTU Compute-Technical Report-2013 No. 15. Technical University of Denmark: Kgs Lyngby, Denmark.
Pinson, P., & Messner, J. W. (2018). Application of postprocessing for renewable energy, in: Statistical Postprocessing of Ensemble Forecasts, edited by: Vannitsem, S., Wilks, D. S., and Messner, J. W., 241–266, Elsevier.
Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev., 133, 1155–1174.
Rasp, S., & Lerch, S. (2018). Neural networks for postprocessing ensemble weather forecasts. Mon. Weather Rev., 146, 3885–3900.
Schefzik, R. (2015). Multivariate discrete copulas, with applications in probabilistic weather forecasting. Heidelberger Institut für Theoretische Studien.
Schefzik, R. (2017). Ensemble calibration with preserved correlations: unifying and comparing ensemble copula coupling and member-by-member postprocessing. Quarterly Journal of the Royal Meteorological Society, 143, 999–1008.
Schefzik, R., & Möller, A. (2018). Ensemble postprocessing methods incorporating dependence structures, in: Statistical Postprocessing of Ensemble Forecasts, edited by: Vannitsem, S., Wilks, D. S., and Messner, J. W., 91–125, Elsevier.
Schefzik, R., Thorarinsdottir, T. L., & Gneiting, T. (2013). Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616–640.
Scheuerer, M., & Hamill, T. M. (2015). Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Weather Rev., 143, 1321–1334.
Scheuerer, M., Hamill, T. M., Whitin, B., He, M., & Henkel, A. (2017). A method for preferential selection of dates in the Schaake shuffle approach to constructing spatio-temporal forecast fields of temperature and precipitation. Water Resour. Res., 53, 3029–3046.
Schulz, B., & Lerch, S. (2022). Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Mon. Weather Rev.,150, 235–257.
Schuhen, N., Thorarinsdottir, T. L., & Gneiting, T. (2012). Ensemble model output statistics for wind vectors. Mon.Weather Rev., 140, 3204–3219.
Sklar, A. (1959). Fonctions de r_epartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Universit_e de Paris, 8, 229–231.
Taillardat, M. (2021). Skewed and mixture of Gaussian distributions for ensemble postprocessing. Atmosphere, 12, 966.
Vannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A., Ben Boual`egue, Z., Bhend, J., Dabernig, M., De Cruz, L., Hieta, L., Mestre, O., Moret, L., Odak Plenkoviˇc, I., Schmeits, M., Taillardat, M., Van den Bergh, J., Van Schaeybroeck, B., Whan, K. and Ylhaisi, J. (2021). Statistical postprocessing for weather forecasts – review, challenges and avenues in a big data world. Bull. Amer. Meteorol. Soc. 102, E681–E699.Top of Form
Wilks, D.S. (2019). Statistical methods in the atmospheric sciences. 4th edition. Amsterdam: Elsevier.