تمنا، ا. (1393). تعیین پارامتر هابل با استفاده از ابرنواخترها. پایان نامه کارشناسی ارشد. استاد راهنما: حبیب اله عصاره. اهواز: دانشگاه شهید چمران اهواز. دانشکده علوم پایه، گروه فیزیک.
توحیدی نیا، ز. (139۸). مطالعه و بررسی تحولات و سیر تکاملی روشهایتعیین مقدار دقیق ثابت هابل. پایان نامه کارشناسی ارشد. استاد راهنما: حبیب الله رزمی. استاد مشاور: محمد رحیم بردبار. قم: دانشگاه قم، دانشکده علوم پایه، گروه فیزیک.
سلیمانی، م. (1392). تعیین فاصله خوشه ستارهای باز با استفاده از ستاره متغیر قیفاووسی. پایاننامه کارشناسی ارشد. استاد راهنما: حبیب اله عصاره. اهواز: دانشگاه شهید چمران اهواز. دانشکده علوم پایه، گروه فیزیک.
عشاق،م. (1388). اندازهگیریهای ثابت هابل. پایاننامه کارشناسی ارشد. استاد راهنما: امیر حسین عباسی. تهران: دانشگاه تربیت مدرس، دانشکده علوم پایه، گروه فیزیک.
Abbott,
B. P. et al. (2017). The LIGO Scientific Collaboration and The Virgo Collaboration., The 1M2H Collaboration., The Dark Energy Camera GW-EM Collaboration and the DES Collaboration. et al
. A gravitational-wave standard siren measurement of the Hubble constant.
Nature 551 (7678), 85-88.
Aghanim, N. et al. (2020). Planck 2018 results. VI. Cosmological parameters. A & A 641, A6, 1-67.
Alam, S., et al. (2017). The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: 1. The data. Monthly Notices of the Royal Astronomical Society, 470 (3), 2610-2630.
Baade, W. (1944). The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula. The Astrophysical Journal, 100, 137-146.
Bengaly, ِC., Dantas, M. A., Casarini, L. & Alcaniz, J. (2023). Measuring the Hubble constant with cosmic chronometers: a machine learning approach. European Physical Journal C, 83, 548, 1-13.
Birkinshaw, M. Hughes, J. P. & Arnaud, K. (1991). A Measurement of the Value of the Hubble Constant from the X-Ray Properties and the Sunyaev-Zel'dovich Effect of Abell 665. The Astrophysical Journal 379, 466-481.
Birkinshaw, M. & Hughes, J. P. (1994). A measurement of the Hubble constant from the X-ray properties and the Sunyaev-Zel'dovich effect of Abell 2218. The Astrophysical Journal 420 (1), 33-43.
Blakeslee, J. P., Lucey, J. R., Tonry, J. L., Hudson, M. J., Narayanan, V. K., & Barris, B. J. 2002). Early-type galaxy distances from the Fundamental Plane and surface brightness fluctuations. Monthly Notices of the Royal Astronomical Society, 330 (2), 443-457.
Branch, D. & Patchett, B. (1973). Type I Supernovae, Monthly Notices of the Royal Astronomical Society 161 (1), 71-83.
Cantiello, M., Jensen, J.B., Blakeslee, J.P., Berger, E., Levan, A.J., Tanvir, N.R., Raimondo, G., Brocato, E., Alexander, K.D., Blanchard, P.K., & Branchesi, M. (2018). A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations. The Astrophysical Journal Letters 854 (2), L31, 1-7.
Chen, H. Y., Fishbach, M., & Holz, D. E. (2022). Machine Learning the Hubble Constant. Astrophysical Journal, 944 (2), 1-15.
Cuceu, A., Farr, J., Lemos, P., & Font-Ribera, A. (2019). Baryon Acoustic Oscillations and the Hubble Constant: Past, Present and Future. Journal of Cosmology and Astroparticle Physics, 10, 044.
Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D. F., Riess, A. G., & Silk, J. (2021). In the realm of the Hubble tension—a review of solutions. Nature Astronomy, 5 (1), 1-12.
Falco, E. E. (1997). An Estimate of H0 from Keck Spectroscopy of the Gravitational Lens System 0957+561. The Astrophysical Journal, 484 (1), 70-78.
Feast, M. W. & Walker, A. R. (1987). Cepheids as distance indicators, Annual review of Astronomy and Astrophysics, 25 (1), 345-375.
Fernández Arenas, D., & Terlevich, E. (2018). An independent determination of the local Hubble constant. Monthly Notices of the Royal Astronomical Society, 481 (1), 1-10.
Fernie, J. D. (1969). The Period–Luminosity Relation: A Historical Review, Publications of the Astronomical Society of the Pacific, 81, 707-731.
Fishbach, M., Gray, R., Hernandez, I.M., Qi, H., Sur, A., Acernese, F., Aiello, L., Allocca, A., Aloy, M.A., Amato, A., & Antier, S., (2019). A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart.The Astrophysical Journal Letters 871 (1), L13, 1-10.
Freedman, W. L. & Feng, L. L. (1999). Determination of the Hubble constant.
Proceedings of the National Academy of Sciences, 96 (20), 11063-11064.
Freedman, W. L., Madore, B. F., Gibson, B. K., Ferrarese, L., Kelson, D. D., Sakai, S., Mould, J. R., Kennicutt, R. C. Jr, Ford, H. C., Graham, J. A., Huchra, J. P., Hughes, S. M. G., Illingworth, G. D., Macri, L. M., & Stetson, P. B. (2001). Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. The Astrophysical Journal, 553(1), 47-72.
Freedman, W. L. & Madore, B. F. (2010). The Hubble Constant. Annual Review of Astronomy and Astrophysics, 48, 673-710.
Freedman, W. L., Madore, B. F., Scowcroft, V., Burns, C., Monson, A., Persson, S. E., Seibert, M., & Rigby, J. (2012). Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant. The Astrophysical Journal 758 (1), 24, 1-10.
Freedman, W. L. (2021). Measurements of the Hubble constant: tensions in perspective. Annual Review of Astronomy and Astrophysics, 59, 1-30.
Friedman, A. (1922). Z. Phys. (in German) 10, 377. (English translation: Friedman, A. (1999). On the Curvature of Space. General Relativity and Gravitation, 31, 1991–2000.
Fritz, A. (2012). Distance Measurements and Stellar Population Properties via Surface Brightness Fluctuations. Publications of the Astronomical Society of Australia, 29(4), 489-508.
Gao, F., Braatz, J. A., Reid, M. J., Lo, K. Y., Condon, J. J., Henkel, C., Kuo, C. Y., Impellizzeri, C. M. V., Pesce, D. W., & Zhao, W. (2016). The Megamaser Cosmology Project. VIII. A Geometric Distance to NGC 5765b. The Astrophysical Journal, 817(2), 128, 1-17.
Giovanelli, R., Haynes, M. P., Da Costa, L. N., Freudling, W., Salzer, J. J., & Wegner, G. (1997). The Tully-Fisher Relation and H0. The Astrophysical Journal Letters, 477(1), L1-L4.
Harris, W. E., Durrell, P. R., Pierce, M. J., & Secker, J. (1998). Constraints on the Hubble constant from observations of the brightest red-giant stars in a Virgo-cluster galaxy. Nature, 395(6697), 45-47.
Hu, J. P. & Wang, F. Y. (2023). Hubble tension: The evidence of new physics. Journal of Cosmology and Astroparticle Physics, 2023(1), 1-20.
Hubble, E. P. (1926). Extragalactic nebulae. The Astrophysical Journal, 64, 321-369.
Hubble, E. P. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15(3), 168-173.
Jang, I. S. & Lee, M. G. (2017). The Tip of the Red Giant Branch Distances to TypaIa Supernova Host Galaxies V. NGC 3021, NGC 3370, and NGC 1309 and the Value of the Hubble Constant. The Astrophysical Journal, 836(1), 74, 1-13.
Kable, J. A. Addison, G. E. & Bennett, C. (2019). Quantifying the CMB Degeneracy between the Matter Density and Hubble Constant in Current Experiments. The Astrophysical Journal, 871(1), 77, 1-7.
Kundić, T., Turner, E. L., Colley, W. N., Gott, J. R., Rhoads, J. E., Wang, Y., Bergeron, L. E., Gloria, K. A., Long, D. C., Malhotra, S., & Wambsganss, J. (1997). A Robust Determination of the Time Delay in 0957+561A, B and a Measurement of the Global Value of Hubble's constant. The Astrophysical Journal, 482(1), 75-82.
Kuo, C. Y., Braatz, J. A., Reid, M. J., Lo, K. Y., Condon, J. J., Impellizzeri, C. M. V., & Henkel, C. (2013). The Megamaser Cosmology Project. V. An Angular-Diameter Distance To NGC 6264 At 140 Mpc. The Astrophysical Journal, 767(2), 155, 1-13.
Leavitt, H. S.& Pickering, E. (1912). Periods of 25 Variable Stars in the Small Magellanic Cloud. Harvard College Observatory Circular, 173, 1-3.
Lee, M. G., Freedman, W. L., & Madore, B. F. (1993). The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies. The Astrophysical Journal 417, 553-559.
Lemaître, G. (1927). Annales de la SociétéScientifique de Bruxelles (in French). Un Univershomogène de masse constante et de rayon croissant rendantcompte de la vitesseradiale des nébuleuses extra-galactiques, A47, 49-59.
Mould, J. & Sakai, S. (2008). The Extragalactic Distance Scale without Cepheids. The Astrophysical Journal Letters, 686(2), L75-L78.
Niedermann, F. & Sloth, M. S. (2020). Resolving the Hubble tension with new early dark energy. Physical Review D, 102 (2), 023511.
Paraficz, D. & Hjorth, J. (2010). The Hubble Constant Inferred From 18 Time Delay Lenses. The Astrophysical Journal 712 (2), 1378-1384.
Perlmutter, S. et al. (1998) The Supernovae Cosmology Project (1998). Discovery of a Supernova Explosion at Half the Age of the Universe. Nature, 391, 51-54.
Planck Collaboration. (2020). Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics, 641, A6.
Poulin, V., Smith, T. L., Karwal, T., & Kamionkowski, M. (2019). Early Dark Energy can Resolve the Hubble Tension. Physical Review Letters, 122 (22), 221301.
Reese, E. D., Mohr, J. J., Carlstrom, J. E., Joy, M., Grego, L., Holder, G. P., Holzapfel, W. L., Hughes, J. P., Patel, S. K., & Donahue, M. (2000). Sunyaev-Zeldovich Effect-derived Distances to the High-Redshift Clusters MS 0451.6-0305 and Cl 0016+16. The Astrophysical Journal, 533 (1), 38-49.
Reese, E. D., Mohr, J. J., Carlstrom, J. E., Joy, M., Grego, L., & Holzapfel, W. L. (2002). Determining the Cosmic Distance Scale From Interferometric Measurements of the Sunyaev-Zeldovich Effect. The Astrophysical Journal, 581(1), 53-85.
Refsdal, S. (1964). On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect. Monthly Notices of the Royal Astronomical Society, 128, 307-310.
Reid, M. J., Braatz, J. A., Condon, J. J., Lo, K. Y., Kuo, C. Y., Impellizzeri, C. M. V., & Henkel, C. (2013). The Megamaser Cosmology Project. IV. A Direct Measurement of the Hubble Constant From UGC 3789. The Astrophysical Journal, 767 (2), 154, 1-11.
Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., & Tonry, J. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 3, 1009-1038.
Riess, A. G., Macri, L. M., Hoffmann, S. L., Scolnic, D., Casertano, S., Filippenko, A. V., Tucker, B. E., Reid, M. J., Jones, D. O., Silverman, J. M., Chornock, R., Challis, P., Yuan, W., Brown, P. J., & Foley, R. J. (2016). A 2.4% Determination of the Local Value of the Hubble Constant, The Astrophysical Journal 826(1), 56, 1-31.
Riess, A. G., et al. (2021). Measurements of the Hubble Constant: Tensions in Perspective. Annual Review of Astronomy and Astrophysics, 59, 1-30.
Riess, A.G., Anand, G.S., Yuan, W., Casertano, S., Dolphin, A., Macri, L.M., Breuval, L., Scolnic, D., Perrin, M., & Anderson, R.I. (2024). JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension at 8σ Confidence. The Astrophysical Journal Letters, 962 (1) L17.
Rusu, E. C., Wong, K. C., Bonvin, V., Sluse, D., Suyu, S. H., Fassnacht, C. D., Chan, J. H. H., Hilbert, S., Auger, M. W., Sonnenfeld, A., Birrer, S., Courbin, F., Treu, T., Chen, G. C. F., Halkola, A., Koopmans, L. V. E., Marshall, P. J., & Shajib, A. J. (2020). H0LiCOW XII. Lens mass model of WFI2033-4723 and blind measurement of its time-delay distance and H0. Monthly Notices of the Royal Astronomical Society, 498, 1, 1440–1468.
Salaris, M. &Cassisi, S. (1998). A new analysis of the red giant branch ‘tip’ distance scale and the value of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 298 (1), 166-178.
Sakstein, J. & Trodden, M. (2020). Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension. Physical Review Letters, 124 (18), 181301.
Sandage, A., Tammann, G. A., Saha, A., Reindl, B., Macchetto, F. D., & Panagia, N. (2006). The Hubble Constant: A Summary of the Hubble Space Telescope Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids. Astrophys. J. 653, 843-860.
Slipher, V. M. (1917). Nebulae, Proceedings of the American Philosophical Society, 56 (1917) 403-409.
Sorce, J. G., Courtois, H. M., Tully, R. B., Seibert, M., Scowcroft, V., Freedman, W. L., Madore, B. F., Persson, S. E., Monson, A., & Rigby, J. (2013). Calibration of the Mid-Infrared Tully-Fisher Relation. The Astrophysical Journal, 765(2), 94, 1-11.
Suyu, S. H. et al. (2017). H0LiCOW-I. H0 Lenses in COSMOGRAIL's Wellspring: program overview. Monthly Notices of the Royal Astronomical Society, 468 (3), 2590-2604.
Tammann, G. A. &Reindl, B. (2012). Advancing the Physics of Cosmic Distances.Proceedings of the International Astronomical Union 8 (S289), 13-25.
Tonry, J. & Schneider, D. P. (1988). A New Technique for Measuring Extragalactic Distances. The Astronomical Journal 96, 807-815.
Tonry, J. L., Blakeslee, J. P., Ajhar, E. A., & Dressler A. (2000). The SBF Survey of Galaxy Distances. II. Local and Large-Scale Flows. Astrophys. J. 530:625-651.
Tully, R. B. & Fisher, J. R. (1977). A new method of determining distances to galaxies. Astronomy and Astrophysics 54, 661-673.
Verde, L., Treu, T., & Riess, A.G. (2019). Tensions between the Early and Late Universe. Nature Astronomy, 3 (10), 891-895.
Wambsganss, J. (1998). Gravitational Lensing in Astronomy. Living Reviews in Relativity 1, 12, 1-70.
Zhao, W., Braatz, J. A., Condon, J. J., Lo, K. Y., Reid, M. J., Henkel, C., Pesce, D. W., Greene, J. E., Gao, F., Kuo, C. Y., & Impellizzeri, C. M. V. (2018). The Megamaser Cosmology Project. X. High-resolution Maps and Mass Constraints for SMBHs. The Astrophysical Journal 854 (2), 124, 1-12.