تحلیل تأثیر دالان‌های جوی گردوخاک خاورمیانه و شمال افریقا بر آب‌وهوای ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه جغرافیا، دانشکده علوم انسانی، دانشگاه هرمزگان، بندرعباس، ایران.

2 گروه جغرافیا، دانشکده علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران.

چکیده

این مطالعه با هدف شناسایی دالان‌های گردوخاک توسط یک الگوریتم خودکار و بررسی ویژگی‌های زمانی و مکانی آنها در خاورمیانه و شمال افریقا و اثر آن بر آب‌وهوای ایران انجام شده است. برای انجام این‌کار، داده‌های عمق نوری هواویز و نمایه آنگستروم از طیف‌سنج تصویربرداری با وضوح متوسط (MODIS) (آکوا) در مقیاس روزانه با وضوح 1Í1 درجه بین سال‌های 2003 و 2020 استفاده شده است. پس از تعیین مجموعه‌ای از شرایط، الگوریتمی برای شناسایی خودکار دالان‌های گردوخاکی ایجاد شد. در نتیجه، 281 دالان گردوخاکی در خاورمیانه شناسایی و بر اساس جهت حرکت‌شان طبقه‌بندی شدند. بر اساس نتایج، در محدوده خاورمیانه و شمال افریقا، 33 درصد دالان‌ها به‌سمت غرب، 19 درصد موارد به‌سمت شرق، 36 درصد موارد به‌سمت جنوب و 12 درصد موارد به‌سمت شمال جریان دارند. بررسی تأثیر دالان‌های گردوخاکی بر ایران نشان داد که درصد قابل‌توجهی (%۵۸) از دالان‌های جوی گردوخاک رخ داده (در شمال افریقا و خاورمیانه)، کشور ایران را تحت‌تأثیر قرار داده است. از ماه مارس تا سپتامبر (حداکثر در تابستان) حداقل ۶۰ درصد از مساحت ایران حداقل برای یک‌بار تحت ‌تأثیر دالان‌های گردوخاکی قرار می‌گیرد. به‌طور کلی توزیع جغرافیایی چگالی وقوع دالان‌ها با ارتفاع از سطح دریا رابطه معکوس دارد. بیشترین فراوانی دالان‌های گردوخاکی در جنوب غرب کشور و در استان خوزستان مشاهده شد. این تحقیق شواهد جدیدی در مورد اهمیت و الگوهای حرکت دالان‌های گردوخاکی منطقه و اثرات آنها بر آب‌وهوای ایران ارائه می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analysis of the effect of atmospheric dust corridors in the Middle East and North Africa on Iran's climate

نویسندگان [English]

  • Mohammad Rezaei 1
  • Manuchehr Farajzadeh 2
1 Department of Geography, Faculty of Humanities, University of Hormozgan, Bandar Abbas, Iran.
2 Department of Geography, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran.
چکیده [English]

Dust aerosols can travel thousands of kilometers through the atmosphere. In this study, we refer to these long-distance dust movements as Atmospheric Dust Corridors (ADCs). The main objective of this study is to identify ADCs using an automated algorithm and to analyze their temporal and spatial characteristics in the Middle East. To achieve this, we utilized daily Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Aqua), spanning from 2003 to 2020, with a resolution of 1° by 1°. In this study, dust aerosols were identified based on AOD values greater than 0.3 and AE values below 0.75.
An algorithm was developed to automatically detect ADCs after applying specific conditions. First, dust masses were identified using the connected components labeling method, and the largest dust mass for each day was selected. The algorithm then examined several factors, including the geometric shape and movement of the dust mass (based on wind data). This method identified 281 ADCs, which were categorized by their direction of movement. Of these, 33% of ADCs moved westward, 19% eastward, 36% southward, and 12% northward. These corridors were most frequent in September, April, and March, while February, November, and December experience the lowest occurrence. Geographically, the highest frequency of ADCs was observed around 45°E, covering parts of Saudi Arabia, Iraq, and Syria.
Western and southern ADCs were primarily observed in the Arabian Peninsula, Iraq, Syria, southern Iran, southern Afghanistan, and northern Pakistan, while northern and eastern ADCs were predominantly found in northern Africa (Sudan, Chad, Niger, and Libya). May was the key month for western ADCs, September for southern ADCs, and April for eastern and northern ADCs. The Mann-Kendall test revealed no significant trends on a monthly or annual basis during the study period.
The analysis of ADCs' impact revealed that 58% of the ADCs observed, affected some regions of Iran. From March to September, at least 60% of Iran's area was impacted by these corridors, with the highest frequency in summer. The geographical distribution of ADC frequency showed an inverse relationship with altitude, with the highest occurrence in the southwest of Iran, particularly in Khuzestan province. Most ADCs entered Iran from the west and south, in line with prevailing wind patterns and the location of dust centers.
In conclusion, this study provides a comprehensive understanding of dust transport patterns in the Middle East and North Africa, offering valuable insights into their impact on Iran's climate. It also underscores the importance of studying ADCs for climate planning, public health, and sustainable development.

کلیدواژه‌ها [English]

  • Aerosols
  • Atmospheric Dust Corridors
  • Middle East and North Africa
  • Iran
لشکری، ح. و صبوئی، م. (1392). تحلیل سینوپتیکی الگوهای حاکم بر طوفان گرد و غبار استان خوزستان. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی «سپهر»، 22(87)، 32-38.‎
براتی، غ.؛ مرادی، م.؛ شامخی، ع. و داداشس رودباری، ع.
(1396). تحلیل روابط توفان‌های غباری جنوب ایران با کم‌فشار سِند. مخاطرات محیط طبیعی، 6(13)، 91-108.‎
شمسی پور، ع.؛ عزیزی، ق. و میری، م. (1394). شناسایی الگوهای تابستانه و زمستانه ورود گرد و غبار به غرب ایران. جغرافیا و برنامه ریزی محیطی، 25(4)، 203-220.‎
باغی، م.؛ راشکی، ع. و محمودی قرایی، م. (1399). بررسی خصوصیات شیمیایی و کانی شناسی گرد و غبار ورودی به شمال شرق ایران و پتانسیل بیماری زایی آن. جغرافیا و مخاطرات محیطی، 9(1)، 139-153.
Abdullaev, S. F., & Sokolik, I. N. (2020). Assessment of the influences of dust storms on cotton production in Tajikistan. Landscape Dynamics of Drylands across Greater Central Asia: People, Societies and Ecosystems, 17- 87.
Abdulwahed, A., Dash, J., & Roberts, G. (2019). An evaluation of satellite dust-detection algorithms in the Middle East region. International journal of remote sensing, 40(4), 1331-1356.
Alizadeh-Choobari, O., Sturman, A., & Zawar-Reza, P. (2014). A global satellite view of the seasonal distribution of mineral dust and its correlation with atmospheric circulation. Dynamics of atmospheres and oceans, 68, 20-34.
Baddock, M. C., Strong, C. L., Leys, J. F., Heidenreich, S. K., Tews, E. K., & McTainsh, G. H. (2014). A visibility and total suspended dust relationship. Atmospheric Environment, 89, 329-336.
Baghbanan, P., Ghavidel, Y., & Farajzadeh, M. (2020). Spatial analysis of spring dust storms hazard in Iran. Theoretical and Applied Climatology, 139, 1447-1457.
Bhattachan, A., Okin, G. S., Zhang, J., Vimal, S., & Lettenmaier, D. P. (2019). Characterizing the role of wind and dust in traffic accidents in California. GeoHealth, 3(10), 328-336.
Broomandi, P., Dabir, B., Bonakdarpour, B., & Rashidi, Y. (2017). Identification of the sources of dust storms in the City of Ahvaz by HYSPLIT. Pollution, 3(2), 341-348.
Broomandi, P., Crape, B., Jahanbakhshi, A., Janatian, N., Nikfal, A., Tamjidi, M., Kim, J.R., Middleton, N., & Karaca, F. (2022). Assessment of the association between dust storms and COVID-19 infection rate in southwest Iran. Environmental Science and Pollution Research, 29(24), 36392-36411.
Chen, Y., Chen, S., Zhou, J., Zhao, D., Bi, H., Zhang, Y., Alam, K., Yu, H., Yang, Y., & Chen, J., (2023). A super dust storm enhanced by radiative feedback. npj Climate and Atmospheric Science, 6(1), 90.
Creamean, J. M., Spackman, J. R., Davis, S. M., & White, A. B. (2014). Climatology of long‐range transported Asian dust along the West Coast of the United States. Journal of Geophysical Research: Atmospheres, 119(21), 12-171.
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. (2011). Atmospheric rivers, floods and the water resources of California. Water, 3(2), 445-478.
DeMott, P.J., Prenni, A.J., Liu, X., Kreidenweis, S.M., Petters, M.D., Twohy, C.H., Richardson, M.S., Eidhammer, T. and Rogers, D. (2010). Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proceedings of the National Academy of Sciences, 107(25), 11217-11222.
Dezfuli, A., Bosilovich, M. G., & Barahona, D. (2021). A Dusty Atmospheric River Brings Floods to the Middle East. Geophysical Research Letters, e2021GL095441.
Di Mauro, B., Garzonio, R., Rossini, M., Filippa, G., Pogliotti, P., Galvagno, M., Morra di Cella, U., Migliavacca, M., Baccolo, G., Clemenza, M., & Delmonte, B. (2019). Saharan dust events in the European Alps: role in snowmelt and geochemical characterization. The Cryosphere, 13(4), 1147-1165.
Dogan, T. R., Saydam, A. C., Yesilnacar, M. I., & Gencer, M. (2010). In-cloud alteration of desert-dust matrix and its possible impact on health: a test in southeastern Anatolia, Turkey. European Journal of Mineralogy, 22(5), 659-664.
Elhadidy, M. A., Abdel-Nabi, D. Y., & Kruss, P. D. (1990). Ultraviolet solar radiation at Dhahran, Saudi Arabia. Solar Energy, 44(6), 315-319.
Enete, I. C., Igu, I. N., & Ayadiulo, R. (2012). Harmattan dust: composition, characteristics and effects on soil fertility in Enugu, Nigeria. British Journal of Applied Science and Technology, 2(1), 72-81.
Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. Earth-Science Reviews, 79(1-2), 73-100.
Francis, D., Fonseca, R., Nelli, N., Bozkurt, D., Picard, G., & Guan, B. (2022). Atmospheric rivers drive exceptional Saharan dust transport towards Europe. Atmospheric Research, 266, 105959.
Furman, H. K. H. (2003). Dust storms in the Middle East: sources of origin and their temporal characteristics. Indoor and Built Environment, 12(6), 419-426.
Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media.
Griffin, D. W., Kellogg, C. A., Garrison, V. H., & Shinn, E. A. (2002). The global transport of dust: an intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth's atmosphere. American Scientist, 90(3), 228-235.
Hamidi, M., Kavianpour, M. R., & Shao, Y. (2013). Synoptic analysis of dust storms in the Middle East. Asia-Pacific Journal of Atmospheric Sciences, 49(3), 279-286.
Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. IEEE transactions on geoscience and remote sensing, 42(3), 557-569.
Israelevich, P., Ganor, E., Alpert, P., Kishcha, P., & Stupp, A. (2012). Predominant transport paths of Saharan dust over the Mediterranean Sea to Europe. Journal of Geophysical Research: Atmospheres, 117(D2).
Jafari, R., & Malekian, M. (2015). Comparison and evaluation of dust detection algorithms using MODIS Aqua/Terra Level 1B data and MODIS/OMI dust products in the Middle East. International Journal of Remote Sensing, 36(2), 597-617.
Kaskaoutis, D.G., Dumka, U.C., Rashki, A., Psiloglou, B.E., Gavriil, A., Mofidi, A., Petrinoli, K., Karagiannis, D., & Kambezidis, H.D. (2019). Analysis of intense dust storms over the eastern Mediterranean in March 2018: Impact on radiative forcing and Athens air quality. Atmospheric environment, 209, 23-39.
Middleton, N. J. (1986). Dust storms in the Middle East. Journal of Arid Environments, 10(2), 83-96.
Notaro, M., Alkolibi, F., Fadda, E., & Bakhrjy, F. (2013). Trajectory analysis of Saudi Arabian dust storms. Journal of Geophysical Research: Atmospheres, 118(12), 6028-6043.
Penning de Vries, M. J. M., Beirle, S., Hörmann, C., Kaiser, J. W., Stammes, P., Tilstra, L. G., & Wagner, T. (2015). A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances. Atmospheric Chemistry and Physics, 15(18), 10597-10618.
Prospero, J. M., Glaccum, R. A., & Nees, R. T. (1981). Atmospheric transport of soil dust from Africa to South America. Nature, 289(5798), 570-572.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of geophysics, 40(1), 2-1.
Ralph, F. M., Neiman, P. J., & Wick, G. A. (2004). Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Monthly Weather Review, 132(7), 1721-1745.
Ralph, F. M., Neiman, P. J., Wick, G. A., Gutman, S. I., Dettinger, M. D., Cayan, D. R., & White, A. B. (2006). Flooding on California's Russian River: Role of atmospheric rivers. Geophysical Research Letters, 33(13).
Ralph, F. M., & Dettinger, M. D. (2011). Storms, floods, and the science of atmospheric rivers. Eos, Transactions American Geophysical Union, 92(32), 265-266.
Rezaei, M., Farajzadeh, M., Ghavidel, Y., & Alam, K. (2018). Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets. Pollution, 4(1), 53-67.
Rezaei, M., Farajzadeh, M., Mielonen, T., & Ghavidel, Y. (2019a). Analysis of spatio-temporal dust aerosol frequency over Iran based on satellite data. Atmospheric Pollution Research, 10(2), 508-519.
Rezaei, M., Farajzadeh, M., Mielonen, T., & Ghavidel, Y. (2019b). Discrimination of aerosol types over the Tehran city using 5 years (2011–2015) of modis collection 6 aerosol products. Journal of Environmental Health Science and Engineering, 17(1), 1-12.
Rezazadeh, M., Irannejad, P., & Shao, Y. (2013). Climatology of the Middle East dust events. Aeolian Research, 10, 103-109.
Salmabadi, H., Khalidy, R., & Saeedi, M. (2020). Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017. Atmospheric Research, 241, 104947.
Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., & Ostrow, H. (1989). MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 145-153.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., & Jeong, M. J. (2013). Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. Journal of Geophysical Research: Atmospheres, 118(14), 7864-7872.
Schepanski, K., Mallet, M., Heinold, B., & Ulrich, M. (2016). North African dust transport toward the western Mediterranean basin: atmospheric controls on dust source activation and transport pathways during June–July 2013. Atmospheric Chemistry and Physics, 16(22), 14147-14168.
Yassin, M. F., Almutairi, S. K., & Al-Hemoud, A. (2018). Dust storms backward Trajectories' and source identification over Kuwait. Atmospheric research, 212, 158-171.
Yu, Y., Kalashnikova, O. V., Garay, M. J., Lee, H., & Notaro, M. (2018). Identification and characterization of dust source regions across North Africa and the Middle East using MISR satellite observations. Geophysical Research Letters, 45(13), 6690-6701.
Tam, W. W., Wong, T. W., Wong, A. H., & Hui, D. S. (2012). Effect of dust storm events on daily emergency admissions for respiratory diseases. Respirology, 17(1), 143-148.
Voss, K. K., Evan, A. T., Prather, K. A., & Ralph, F. M. (2020). Dusty Atmospheric Rivers: Characteristics and Origins. Journal of Climate, 33(22), 9749-9762.
Voss, K. K., & Evan, A. T. (2020). A new satellite-based global climatology of dust aerosol optical depth. Journal of Applied Meteorology and Climatology, 59(1), 83-102.
Waliser, D., & Guan, B. (2017). Extreme winds and precipitation during landfall of atmospheric rivers. Nature Geoscience, 10(3), 179-183.