ارزیابی روش‌های درون‌یابی تأخیر وردسپهری حاصل از مشاهدات ایستگاه‌های پراکنده سامانه تعیین موقعیت جهانی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ژئودزی، دانشکده مهندسی نقشه‌برداری، دانشگاه صنعتی خواجه‌نصیرالدین‌طوسی، تهران، ایران.

چکیده

این مطالعه به بررسی روش‌های درون‌یابی مقدار بخار آب قابل‌بارش PWV (Precipitable Water Vapor) با استفاده از داده‌های ایستگاه‌های GPS (Global Positioning System) پراکنده در منطقه لس‌آنجلس می‌پردازد. منطقه موردمطالعه به‌دلیل تنوع جغرافیایی و اقلیمی،
شامل مناطق ساحلی، کوهستانی و دشت‌ها، و همچنین تغییرات فصلی، برای ارزیابی روش‌های مختلف انتخاب شده است. روش‌های مختلف
درون‌یابی مورد بررسی، شامل عیارسنجی (Kriging)، ماشین بردار پشتیبان SVM (Support Vector Machine)، جنگل تصادفیRF  (Random Forest)، همسایگی طبیعی NN (Natural Neighbor) و شبکه عصبی مصنوعی ANN (Artificial Neural Network)، بودند. ابتدا تأخیر تروپسفری محاسبه و تأثیر پارامترهای هواشناسی مانند دمای سطح (Surface Temperature)، فشار سطح (Surface Pressure) و میانگین وزنی دما (Weighted Mean Temperature) بر PWV بررسی شد. نتایج نشان داد که مدل SVM به‌دلیل توانایی بالا در مدل‌سازی روابط غیرخطی، بهترین عملکرد را داشته و در مناطق کوهستانی دقت بیشتری ارائه داده است. همچنین، روش عیارسنجی نیز عملکرد مناسبی داشت، اما به‌دلیل فرض‌های ساده‌تر، ضعیف‌تر از SVM عمل کرد. جنگل تصادفی نیز به‌دلیل نیاز به داده‌های متراکم، نتایج مطلوبی ارائه نکرد. نتایج در تاریخ‌های 24 ژوئیه 2021 و 28 ژانویه 2022، با تحلیل‌های آماری تأیید شد. نقشه‌های توزیعPWV  جو نیز تهیه و تحلیل شدند که تغییرات زمانی و فضایی PWV را نشان دادند. این مطالعه به اهمیت انتخاب صحیح روش‌های درون‌یابی برای برآورد دقیقPWV  و کاربرد آنها در پیش‌بینی‌های جوی تأکید دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Tropospheric Delay Interpolation Methods from Scattered GPS Station Observations

نویسندگان [English]

  • Aida Afshari Harzevili
  • Yazdan Amerian
Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.
چکیده [English]

This study comprehensively evaluates the effectiveness of five interpolation methods, Kriging, Support Vector Machine (SVM), Random Forest (RF), Natural Neighbor (NN), and Artificial Neural Network (ANN), in estimating Precipitable Water Vapor (PWV) based on GPS data collected from 25 strategically located stations across the diverse geographic region of Los Angeles. The predictors utilized in this study include critical factors such as latitude, longitude, elevation, and tropospheric delay components derived from high-precision GPS observations. The analysis primarily focuses on two representative dates, July 24, 2021 (summer), and January 28, 2022 (winter), specifically chosen for their contrasting meteorological conditions. These dates enable a detailed evaluation of seasonal variability in PWV distribution and provide an opportunity to test the robustness of the selected methods under varying atmospheric conditions.
Tropospheric delay, a key parameter in GNSS-based atmospheric studies, was computed by separating it into its hydrostatic (Zenith Hydrostatic Delay: ZHD) and wet (Zenith Wet Delay: ZWD) components. ZHD was accurately calculated using the well-established Saastamoinen model, which relies on meteorological variables such as surface pressure and station altitude. ZWD was subsequently derived as the difference between ZHD and the Zenith Total Delay (ZTD). The final PWV values were estimated by applying a region-specific coefficient that depends on the weighted mean temperature (T_m). This critical parameter, T_m, was determined using ERA-5 reanalysis data to ensure precise calculations.
The results demonstrate that SVM emerged as the most effective interpolation method, achieving the lowest Root Mean Square Error (RMSE) of 0.6 mm in winter and exhibiting remarkable robustness across diverse spatial and temporal conditions. Kriging, another reliable method, provided accurate results in regions with dense station coverage but encountered difficulties in sparsely populated areas. RF and NN exhibited better performance in winter conditions, benefiting from the reduced atmospheric noise and more stable meteorological conditions during this season. Conversely, ANN, while theoretically capable of modeling complex relationships, was limited in this study by suboptimal network configurations and sensitivity to sparse data distribution. This underscores the importance of careful architectural design and parameter tuning to unlock its full potential.
Seasonal differences in PWV distribution were clearly depicted in the high-resolution maps generated for the selected dates. During summer, PWV values exhibited significant diurnal fluctuations, with peaks in coastal regions during the afternoon due to elevated temperatures and humidity levels. In contrast, the winter maps displayed more stable distributions with lower peak values, reflecting cooler temperatures and reduced atmospheric moisture. These observations highlight the challenges posed by the dynamic summer conditions while emphasizing the critical role of meteorological parameters such as temperature, pressure, and humidity in influencing PWV estimation accuracy.
This study underscores the necessity of selecting appropriate interpolation methods tailored to specific conditions for accurate PWV estimation. SVM demonstrated exceptional capability in handling nonlinear relationships and scattered datasets, making it the most reliable method in this study. Furthermore, while ANN showed room for improvement, its performance could be significantly enhanced with better configurations and deeper architectures specifically tailored for atmospheric complexities. These findings provide valuable insights into GNSS-based atmospheric research and contribute to the advancement of meteorological modeling, weather forecasting, and climate science.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • Kriging
  • Precipitable Water Vapor
  • Random Forest
  • Support Vector Machine
Abdallah, A. T. M. (2016). Bernese GNSS Software Handout University of Stuttgart, Germany.
Aurenhammer, F. (1991). Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23, 345-405.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97, 15787-15801.
Blanch, J. (2004). Using Kriging to Bound Satellite Ranging Errors Due to the Ionosphere, Stanford University, California.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Cambardella, C. A., Moorman, T. B., Novak, J., Parkin, T. B., Karlen, D., Turco, R., and Konopka, A. E. (1994). Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci Soc Am J., 58(5), 1501-1511.
Carlson, T. (1993). Mid-Latitude Weather Systems. Transactions of the Institute of British Geographers, 18.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20, 273-297.
Cristianini, N., & Shawe-Taylor, J. (2001). An introduction to support vector machines and other kernel-based learning methods. Repr. Introduction to Support Vector Machines and other Kernel-Based Learning Methods 22.
Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88, 2783-2792.
Egova, E. S. (2015). Integrated water vapour comparison from GNSS and WRF model for Bulgaria in 2013., Sofia University Unpublished master’s thesis. Bulgaria.
Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global Positioning System. Theory and practice.
Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vector classification. Taipei, Taiwan.
James, G. (2013). An Introduction to Statistical Learning. Springer.
Kleijer, F. (2004). Troposphere Modeling and Filtering for Precise GPS Leveling.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2, 18-22.
Lo, J., & El-Mowafy, A. (2011). Interpolation of the GNSS wet troposphere delay. In Surveying and Spatial Sciences Conference, 2011, 425-438. New Zealand Institute of Surveyors and the Surveying and Spatial Sciences.
Rahbar, S. S. M. (2016). Comparison of different methods of determining the geodetic height correction level: A case study of Tehran city. Iran Geophysics Journal, 10, 40-52.
Rahman, H. (2018). Evaluation of Synthetic CPT and Soil Boring Data by Various Spatial Interpolation Techniques.
Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique (1946-1975), 105, 279-298.
Sambridge, M., Braun, J., & McQueen, H. (1995). Geophysical parametrization and interpolation of irregular data using natural neighbours. Geophysical Journal International, 122, 837-857.
Scholkopf, B., & Smola, A. J. (2018). Learning with kernels: support vector machines, regularization, optimization, and beyond, MIT press.
Seeber, G. (2003). Satellite Geodesy: foundations,methods and application, 2nd Edition/Ed.
Sukumar, N., Moran, B., & Belytschko, T. (1998). The natural element method in solid mechanics. International journal for numerical methods in engineering, 43, 839-887.
Suthaharan, S. (2016). Support Vector Machine. In Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning" (S. Suthaharan, ed.), 207-235. Springer US, Boston, MA.
Wallace, J. M., & Hobbs, P. V. (2006). Preface to the Second Edition. In Atmospheric Science (Second Edition) (J. M. Wallace and P. V. Hobbs, eds.), pp. xi-xiii. Academic Press, San Diego.
Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists, John Wiley & Sons.
Zhang, R., Shen, Y., Tang, Z., Li, W., & Zhang, D. (2022). A review of numerical research on the pressure swing adsorption process. Processes 10, 812.