توزیع مکانی ویژگی‌های موج‌های گرمایی تابستانی در استان تهران طی 2020-1981

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده اقلیم شناسی و تغییر اقلیم، پژوهشگاه هواشناسی و علوم جو، مشهد، ایران.

2 پژوهشگاه هواشناسی و علوم جو، تهران، ایران.

چکیده

در این پژوهش، تغییرات دهه‌ای مکانی و زمانی ویژگی‌های موج‌های گرمایی تابستانی (Heat Waves) شامل تعداد، فراوانی، مدت، بزرگی و دامنه طی چهار دهه دوره 2020-1981 بر اساس سه نمایه آستانه‌ای عامل گرمای بیش از حد EHF (Excess Heat Factor)، صدک نودم دمای بیشینه TX (TX90) و صدک نودم دمای کمینه TN (TN90) بررسی شد. امواج گرمایی با استفاده از داده‌های دمای شبکه‌ای پایگاه داد بازتحلیل ERA5-Land (The fifth generation of European ReAnalysis) شناسایی شدند. نتایج نشان داد مجموع و انحراف معیار ده‌ساله پنج ویژگی HWs در استان تهران، از دهه اول تا بالاترین مقادیر در دهه آخر از نظر زمانی و از نظر مکانی با ناهنجاری مثبت بالاتر در نواحی جنوبی و جنوب غربی افزایش یافت. در دهه آخر به‌ترتیب ۸/۶۵، ۵/۸۵ و ۴۴ درصد از مساحت استان در هر سه نمایه EHF، TX90 و TN90 شاهد تعداد ۳۵-۲۵ رخداد بودند. شهرستان‌های پاکدشت، پیشوا، قرچک و ورامین طی دهه 1981-1990 نسبت به میانگین 40 ساله این نمایه، به‌ترتیب 8/17، 18 و 17 تعداد کمتر امواج گرمایی بر اساس نمایه‌های EHF، TN90 و TX90 تجربه کرده‌اند. در مقابل، برای دهه آخر، نمایه EHF با مقدار بیشینه 6/25 رخداد (8/20 برای TN90 و 24 رخداد برای TX90)، بیشترین تفاوت را با میانگین 40 ساله این ویژگی نشان داد. افزایش بزرگی و دامنه موج‌های گرمایی در دهه‌های پایانی، نشان‌دهنده داغ‌تر شدن موج‌های گرمایی در کنار افزایش مدت و فراوانی آنهاست. با توجه به روند افزایشی مشاهده شده، نیاز به برنامه‌ریزی شهری و کشاورزی برای سازگاری با این رخداد وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The spatial distribution of summer heat wave characteristics in Tehran Province from 1981 to 2020

نویسندگان [English]

  • Mansoureh Kouhi 1
  • Ebrahim Asadi Oskouei 1
  • Mehdi Rahnama 2
  • Fatemeh Abbasi 1
1 Climate Research Institute, Atmospheric Science and Meteorological Research Center, Mashhad, Iran.
2 Atmospheric Science and Meteorological Research Center, Tehran, Iran.
چکیده [English]

Temperature has undeniable effects on human activities and natural processes. In particular, an increase in temperature in the form of heatwaves affects all aspects of human life, including architecture, comfort, transportation, agriculture, and industry. Recently, both the frequency and intensity of heatwaves have increased globally, making them a major cause of weather-related deaths in many countries. The characteristics and intensity of heatwaves vary across locations. A heatwave is typically defined as positive fluctuations or peaks above the average daily maximum temperature that persist for several days or even weeks in specific geographical areas.
Several studies have analyzed long-term extreme warm events in Tehran Province, mostly at weather stations. However, no studies have focused on assessing the different aspects of heatwaves (HWs) using percentile indices (EHF, TX90, and TN90) as well as interpreting their climatological and spatiotemporal variations. Therefore, this study aims to (i) assess the decadal changes in the different HW aspects over Tehran Province during the last four decades, from 1981 to 2020, and (ii) interpret the spatiotemporal patterns and anomalies in the different HW aspects over the study area. The daily minimum and maximum temperatures (°C) from the ERA5-Land dataset have been used to calculate the aspects of heatwaves over Tehran province (Muñoz-Sabater et al., 2021).
Heat waves can be calculated based on three definitions (indices). These definitions are 1- based on the 90th percentile of TN (daily minimum temperature), which is called Tn90 heatwaves; 2- the 90th percentile of TX (daily maximum temperature), which is called Tx90 heatwaves; and 3- EHF, which are heatwaves calculated based on the Excess Heat Factor EHF. The number of heatwaves is calculated for the summer season (May to September). On days (at least three consecutive days) when one of the following conditions is observed, the heat wave has occurred: TN greater than the 90th percentile of the minimum temperature (TN90), TX greater than the 90th percentile of maximum temperature (TX90), the positivity of EHF (EHF). EHF is calculated daily and is a combination of two Excess Heat Indices (EHI) that indicate the potential for heat adaptation and the climatic significance of heat on a specific day.
In this study, the decadal trends, regional distribution, and anomalies in the heatwave aspects (HW) in Tehran Province over the past 40 years (1981-2020) were calculated. Across all indices, the decadal sum and standard deviation of the five HW characteristics in Tehran Province gradually increased from the first decade (1981–1990) to the highest values in the last decade (2011–2020). The results indicated that the decadal total number of summer heat waves based on the EHF index in the fourth decade (2011–2020) ranged from a maximum of 39 events to a minimum of 19 events across Tehran Province, whereas this characteristic in the first decade ranged between 8 and 16 events. In the last decade, 65.8%, 85.5%, and 44% of the province's area experienced 25-35 events according to the three indices EHF, TX90, and TN90, respectively. The magnitude and amplitude (highest recorded temperature during the most intense heat wave) have also increased in the later decades according to all three indices, reflecting hotter heat waves with increased duration and frequency. Using the EHF index, higher values were obtained for most characteristics (including HWN, HWD, and HWF) compared to the other two indices, indicating its greater sensitivity in detecting heat waves. The lowest values for HW characteristics were derived from the TN90 index. 
The analysis of heatwave characteristics in Tehran Province over four decades (1981–2020) showed that not only the frequency but also the intensity, duration, and spatial extent of heatwaves have significantly increased over the four decades. A significant increase in the frequency and duration of heatwaves in the southern and southwestern regions of Tehran Province was observed in the recent decade (2011–2020). On the whole, ERA5-Land data, despite some limitations in high-altitude areas, are considered an effective tool for analyzing climatic trends and especially for assessing the spatiotemporal patterns of heatwaves on a regional scale, as mentioned in previous studies. Examining the spatial distribution, frequency, intensity, and duration of heatwaves and identifying the more vulnerable areas to these events is crucial for informing public health policies, agricultural planning, and crisis management strategies. The results of this study emphasize the need for special attention to the vulnerable areas of Tehran Province (the southern and southwestern regions) regarding heatwaves under global warming conditions.

کلیدواژه‌ها [English]

  • ERA5-land
  • Reanalysis
  • Tehran
  • Heat wave
اسمعیل نژاد، م.؛ خسروی، م.؛ علیجانی، ب. و مسعودیان، ا. (1392). شناسایی موج‌های گرمایی ایران. جغرافیا و توسعه، (33)11، 54-39.
اعتمادیان، ا.؛ دوستان، ر. و زرین، آ. (1399). نواحی گرمایی ایران. نشریه پژوهش‌های اقلیم شناسی، (42)11، 30-17.
بهاروندی، ن.؛ مجرد، ف. و معصوم پور، ج. (1399). شناسایی موج‌های گرمایی و تحلیل تغییرات زمانی-مکانی آنها در ایران. تحقیقات کاربردی علوم جغرافیایی (علوم جغرافیایی)، 20(59)، 39-58.
بیرانوند، آ.؛ دوستکامیان، م.؛ حیدری، س. وگودرزی، م. (1402). بررسی تغییرات زمانی-مکانی نمایه حدی موج‌های گرمایشی و سرمایشی در ایران. مجله آمایش جغرافیایی فضا، (3)13، 105-121.
حسین پور، ز.؛ شمسی پور، ع.؛ کریمی، م. و خوش اخلاق، ف. (1402). تحلیل آماری موج‌های گرمایی در دامنه‌های جنوبی البرز. نشریه تحقیقات کاربردی علوم جغرافیایی، ۲۳ (۶۸)، ۸۱-۹۸.
خسروی، م. و اسمعیل نژاد،م. (1399). بررسی آماری همدیدی موج‌های گرمایی کام تداوم ایران، فصلنامه مطالعات جغرافیایی مناطق کوهستانی، 2(2)، 23-19.
سام خانیانی، ع. و محمدی، ع. (1401). مقایسه داده‌های بازتحلیل ERA5-Land با مشاهدات زمینی در ایران. مجله ژئوفیزیک ایران، 16(1)، 212-195.
مجرد، ف.؛ معصوم پور، ج. و رستمی، ط. (1394). تحلیل آماری ـ همدیدی موج‌های گرمایی بالای 40 درجه سلسیوس در غرب ایران. جغرافیا و مخاطرات محیطی، (13)، 58-41.
عباسی، ف.؛ کوهی، م.؛ جوانشیری، ز.؛ ملبوسی، ش.؛ حبیبی نوخندان، م.؛ بابائیان، ا. و فلامرزی، ی. (1399). آشکارسازی و به ‌روز رسانی تغییر اقلیم در ایستگاه‌های کشور (دوره 2017-1958). پژوهش‌های اقلیم شناسی، 1399(42)، 153-137. 
Adigun, P., Abah, E. O., & Ajileye, O. D. (2024). Intensifying human-driven heatwaves characteristics and heat related mortality over Africa. Environmental Research: Climate, 3(1), 015007.
Arce, C., & Uribe, E. (2015). Managing Vulnerability and Boosting Productivity in Agriculture through Weather Risk Mapping.
Becker, F. N., Fink, A. H., Bissolli, P., & Pinto, J. G. (2022). Towards a more comprehensive assessment of the intensity of historical European heat waves (1979–2019). Atmospheric Science Letters, 23(11), e1120.
Ceccherini, G., Russo, S., Ameztoy, I., Marchese, A. F., & Carmona-Moreno, C. (2017). Heat waves in Africa 1981–2015, observations and reanalysis. Natural Hazards and Earth System Sciences, 17(1), 115-125.
Chen, Y., Sharma, S., Zhou, X., Yang, K., Li, X., Niu, X., & Khadka, N. (2021). Spatial performance of multiple reanalysis precipitation datasets on the southern slope of central Himalaya: Atmospheric Research, 250, 105365, https://doi.org/10.1016/j.atmosres.2020.10536
Christidis, N., Mitchell, D., & Stott, P. A. (2023). Rapidly increasing likelihood of exceeding 50° C in parts of the Mediterranean and the Middle East due to human influence. npj Climate and Atmospheric Science, 6(1), 45.
Cimolai, C., & Aguilar, E. (2024). Assessing Argentina's heatwave dynamics (1950–2022): a comprehensive analysis of temporal and spatial variability using ERA5-LAND. Theoretical and Applied Climatology, 155(6), 4925-4940.
Çulpan, H. C., Şahin, Ü., & Can, G. (2022). A step to develop heat-health action plan: assessing heat waves’ impacts on mortality. Atmosphere, 13(12), 2126.
de Araújo, G. R. G., Frassoni, A., Sapucci, L. F., Bitencourt, D., & de Brito Neto, F. A. (2022). Climatology of heatwaves in South America identified through ERA5 reanalysis data. International Journal of Climatology, 42(16), 9430-9448.
Driouech, F., ElRhaz, K., Moufouma-Okia, W., Arjdal, K., & Balhane, S. (2020). Assessing future changes of climate extreme events in the CORDEX-MENA region using regional climate model ALADIN-climate. Earth Systems and Environment، 4(3)، 477-492.
Espinosa, L. A., Portela, M. M., & Matos, J. P. (2023). ERA5-Land Reanalysis Temperature Data Addressing Heatwaves in Portugal. In International Congress on Engineering and Sustainability in the XXI Century (pp. 81-94). Cham: Springer Nature Switzerland.
Fischer, E. M., & S. Schär, 2010: Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci., 3, 398–403.
Labban, A., Morsy, M., Abdeldym, A., Abdel Basset, H., & Al-Mutairi, M. (2023). Assessment of changes in heatwave aspects over Saudi Arabia during the last four decades. Atmosphere, 14(11), 1667.
Lagouvardos, K., Dafis, S., Kotroni, V., Kyros, G., & Giannaros, C. (2024). Exploring Recent (1991–2020) Trends of Essential Climate Variables in Greece. Atmosphere, 15(9), 1104. https://doi.org/10.3390/atmos15091104
Miller, S., Chua, K., Coggins, J., & Mohtadi, H. (2021). Heat waves, climate change, and economic output. Journal of the European Economic Association, 19(5), 2658-2694.
Morsy، M.، & El Afandi، G. (2021). Decadal changes of heatwave aspects and heat index over Egypt. Theoretical and Applied Climatology, 146(1), 71-90.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., & Martens, B. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth system science data, 13(9), 4349-4383.
Nairn, J., Fawcett, R., & Ray, D. (2009). Defining and predicting excessive heat events, a national system. In Modelling and understanding high impact weather: extended abstracts of the third CAWCR Modelling Workshop, 30, 83-86.
Nairn, J., Ostendorf, B., & Bi, P. (2018). Performance of excess heat factor severity as a global heatwave health impact index. International journal of environmental research and public health, 15(11), 2494.
Perkins, S. E., & Alexander, L. V. (2013). On the measurement of heat waves. Journal of climate, 26(13), 4500-4517.
PwC. (2011). Protecting human health and safety during severe and extreme heat events, a national framework. Report for the Commonwealth Government, PricewaterhouseCoopers Australia, 84 pp. [Available online at http://www.pwc.com.au/industry/government/publications/extreme-heat-events.htm.]
Cueto, R. O. G., Martínez, A. T., & Ostos, E. J. (2010). Heat waves and heat days in an arid city in the northwest of Mexico: current trends and in climate change scenarios. International journal of biometeorology, 54(4), 335-345
Ragatoa, D. S., Ogunjobi, K. O., Klutse, N. A. B., Okhimamhe, A. A., & Eichie, J. O. (2019). A change comparison of heat wave aspects in climatic zones of Nigeria. Environmental Earth Sciences, 78, 1-16.
Russo, S., Marchese, A. F., Sillmann, J., & Imme, G., (2016). When Will Unusual Heat Waves Become Normal in A Warming Africa?. Environmental Research Letters, 11, 1-10.
Saxena, S., Agrawal, S., & Basu, D. (2024). EHF based Heatwave Identification and its Impact on Urban Heat Island Intensity: A Case Study of an Indian City. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 377-382.
Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 24(5), 2527-2544.
Varghese, B. M., Hansen, A., Nitschke, M., Nairn, J., Hanson-Easey, S., Bi, P., & Pisaniello, D. (2019). Heatwave and work-related injuries and illnesses in Adelaide, Australia: a case-crossover analysis using the Excess Heat Factor (EHF) as a universal heatwave index. International archives of occupational and environmental health, 92, 263-272.
Wang, Y. R., Hessen, D. O., Samset, B. H., & Stordal, F. (2022). Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sensing of Environment, 280, 113181. https://doi.org/10.1016/j.rse.2022.113181.
Wang, Y., Sun, W., Huai, B., Wang, Y., Ji, K., Yang, X., Du, W., Qin, X., & Wang, L. (2024). Comparison and evaluation of the performance of reanalysis datasets for compound extreme temperature and precipitation events in the Qilian Mountains. Atmospheric Research, 304, 107375. https://doi.org/10.1016/j.atmosres.2024.107375
Wedler, M., Pinto, J. G., & Hochman, A. (2023). More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. Science of the Total Environment, 870, 161883.
Xue, C., Wu, H., & Jiang, X. )2019(., Temporal and spatial change monitoring of drought grade based on ERA5 analysis data and BFAST method in the belt and road area during 1989–2017: Advances in Meteorology, https://doi.org/10.1155/2019/4053718.
Yilmaz, M. (2023). Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment, 856(2), 159182.
Yin, C., Yang, Y., Chen, X., Yue, X., Liu, Y., & Xin, Y. (2022). Changes in global heat waves and its socioeconomic exposure in a warmer future. Climate Risk Management, 38, 100459.
Zhao, P., He, Z., Ma, D., & Wang, W. (2023). Evaluation of ERA5-Land reanalysis datasets for extreme temperatures in the Qilian Mountains of China. Frontiers in Ecology and Evolution, 11, 1135895.
Zittis G, Almazroui M, Alpert P, Ciais P, Cramer W, Dahdal Y, Fnais M, Francis D, Hadjinicolaou P, Howari F, & Jrrar A. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of geophysics, 60(3), e2021RG000762.