بررسی تغییرپذیری میانگین ماهانه کلروفیل آ در دریای‌خزر در دوره 2022-2010 مبتنی بر برخی پارامترهای فیزیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

هدف کار حاضر مطالعه تغییرپذیری میانگین ماهانه غلظت کلروفیل آ از سال 2010 تا 2022 به‌همراه دمای سطحی، باد و جریان سطحی (میانگین هفتگی، استخراج‌شده از داده‌های ارتفاع‌سنجی) در دریای‌خزر با کمک داده‌های ماهواره‌ای، با بررسی سری‌های زمانی، همبستگی‌ها، تحلیل طیفی و نمودارهای هافمولر، برای ماه‌هایی که با بیشترین شکوفایی جلبکی همراه با افزایش کلروفیل آ است، می‌باشد. بر اساس نتایج، بیشترین شکوفایی‌ها در اواخر ماه‌های گرم رخ می‌دهد (به‌ویژه در سپتامبر 2017). از 2010 تا 2018 شکوفایی جلبکی افزایشی بوده، ولی از 2018 تا 2022 غلظت آن کمی کاهشی بوده است. در ماه‌های اوج شکوفایی، بادهای سطحی شمال شرقی بوده که انتقال اکمن جنوب-غرب‌سو را تقویت و فرایند فراچاهی را در سواحل شمال شرقی خزر ترغیب می‌کند. در فصل سرد نیز، با جهت باد عمدتاً جنوبی (فرارفت گرم)، شکوفایی ضعیف‌تر مشاهده شد. الگوی جریان‌ها با پیچک‌های میان‌مقیاس نیز نقشی مؤثر در انتقال افقی کلروفیل آ (در حد نامطلوب) به سواحل جنوب و غربی خزر دارند. به بیانی دیگر، کلروفیل آ تولیدشده در قسمت‌های شمال و مرکزی که در فصول گرم رخ می‌دهد، در اثر جریان‌ها به سواحل جنوب منتقل و موجب آسیب به شیلات و غیره می‌شود. غلظت کلروفیل آ (در تمام مقاله هر جا کلروفیل تنها آمده منظور کلروفیل آ است) در حوزه جنوبی هنگام شکوفایی فراگیر، حدود 17درصد مقدار میانگین آن در خزر میانی است. سر‌ی زمانی، تحلیل طیفی و همبستگی‌ها به‌همراه نمودارهای هافمولر تغییرات غلظت کلروفیل آ به‌همراه تغییرات جریان نشان داد که جریان‌های شمال-جنوبی نقش مهمی در انتقال کلروفیل آ دارند. تغییرات سیکلی، حدود چهارساله، یک‌ساله یک، شش‌ماهه و سه‌ماهه در غلظت کلروفیل آ، به‌ویژه در خزر میانی مشاهده شد. تغییرات بلندمدت احتمالاً مربوط به پدیده­های دور پیوند نوسان تغییرات جو-اقیانوس، همانند انسو هستند (احتمالاً با تأخیر زمانی).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of the variability of the monthly average chlorophyll a in the Caspian Sea in the period 2010-2022 based on some physical parameters

نویسندگان [English]

  • Abbas Ali Aliakbari-Bidokhti
  • Asghar Bohluly
  • Hamed Abbaszadeh Azar
Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

Some of the algae bloom phenomena in marine environments are harmful and under increase due to climate change and marine degradation in most coastal areas of the world. Caspian Sea also is experiencing these phenomena, which can really harm this fragile ecosystem. In this paper, this phenomenon is studied for the Caspian Sea for the last decade. Data of sea surface color (as the concentration of chlorophyll), surface temperature, surface currents and surface winds data acquired from two sites, namely NASA and AVISO, including some data of surface color and temperature of MODIS satellite data have been used. Their spatial resolution is about half a degree and the time resolution is weekly for chlorophyll and sea surface temperature and surface currents data and monthly for wind data. Time series and spectra analyses were used to consider time and periodic variations of cholorophyll concenterations as well as surface currents in the midlle and southern Caspian Sea. Some Hovmöller diagrams for the concentrations of the cholorophyll and currents are used to consider the maps of changes for the whole period of study.
The results show that these phenomena occur often in the last months of summer and some time in winter. It occurs almost extensively every one to two year and mainly starting in the northern basin of the Caspian Sea. The upwelling due to wind, especially in the eastern coastal areas of the Caspian Sea seems to be very important in this event. The surface circulation can transport and redistribute the chlorophyll produced be the events of algae bloom. It also appears that the number of blooms has slightly decreased in recent decade but its intensity seems to have increased. This is particularly so for the events between 2015 and 2020, in which September 2017 and 2018 has experienced strong outbreak of algae blooms that have spread into the southern Caspian Sea as well. In some cases, as in September 2017, it might have reached the southern coast of the Caspian Sea that could have harmed the coastal facilities and fisheries. These are well shown on the Hovmöller diagrams for chlorophyll concentrations and surface currents for the whole period of study in the Caspian Sea.
There are 4 yearly, yearly and seasonal variability in the occurrence of algae blooms and long cyclic changes of the variability may be due to the large scale and long period oscillation, as Enso in the atmosphere-ocean system. The spectra of Nini 3.4 also shows that some 4 to 5 years’ cyclic variation exists in Enso signal. Although the Enso singal shows that following an El Nino event, there might be an algae bloom event in the Caspian Sea (as the event of September 2017). This is expected in face of present climate change and sea surface temperature increase in recent years.

کلیدواژه‌ها [English]

  • Algae bloom
  • Chlorophyll
  • Surface currents
  • See surface Temperature
  • wind
  • Caspian Sea
احسانی، ا. (1391). ارزیابی صحت داده های دور سنجی اصول و روش ها. چاپ اول، دانشگاه تهران.
باباگلی، ج.؛ علی­اکبری بیدختی، ع. ع. و سلمانی قزوینی، ز. (1397)، بررسی خواص فیزیکی و امواج بلند ساحلی خزر جنوبی. مجله ژئوفیزیک ایران، 12(3)، 39-52.
ثمینی، ه.؛ علی­اکبری بیدختی، ع. ع.؛ عظام، م. و ولی نسب، ت. (1400)، شبیه سازی عددی تغییرات فصلی پلانکتون ها و مواد مغذی در شمال دریای عمان با استفاده از مدل جفت شده ROMS-NPZD. مجله ژئوفیزیک ایران، 15(2)، 92-71.
حمزه­ئی، ص.؛ صدیق مرتضوی، م.؛ علی اکبری بیدختی، ع. ع. و غیبی، ا. (1390) بررسی وقوع و گسترش کشند قرمز در خلیج فارس و دریای عمان با تحلیل داده های سنجنده MODIS، مجله انسان و محیط زیست، 9(3)، 39-48.
مخلوق، آ.؛ نصرالله­زاده ساروی، ح.؛ روحی، ا.؛ آقایی مقدم، ع. ع. و کیهان ثابتی، ع. ر. (1400)، تعیین پتانسیل شکوفایی جلبکی و کیفیت آب بر اساس غلظت کلروفیل-آ، تراکم و زی توده فیتوپلانکتون در مناطق ساحلی حوزه جنوبی دریای‌خزر (98-1397). مجله علمی شیلات ایران، 30(1)، 105-93.
مکارمی، م.؛ سبک آرا، ج. و میرزاجانی، ع. ر. (1390)، بررسی شکوفایی جلبک AAB) Nodularia) در حوضه جنوب‌غربی دریای‌خزر (محدوده آب های گیلان) سال های 85 – 1384. مجله علوم زیستی، 5(1)، 94-79.
Ahmadi, B., Gholamalifard, M, Kutser, T., Vignudelli, S., & Kostianoy A., (2020). Spatio-Temporal Variability in Bio-Optical Properties of the Southern Caspian Sea, A Historic Analysis of Ocean Color Data. Remote Sensing. 12 (23), 3975.
Al-Yamani, F., Bishop, J., Ramadhan, E., Al-Husaini, M., & Al-Ghadban, A. N., (2005). Oceanographic Atlas of Kuwait’s Waters. Kuwait Institute for Scientific Research.
Anderson, D. M., McGillicuddy, D. J., Keafer, B. A., He, R. & Townsend, D. W., (2010). Bloom dynamics of the red tide dinoflagellate Alexandrium fundyense in the Gulf of Maine: a synthesis and progress towards a forecasting capability ICES CM 2010/N: 01.
Anderson, D. M., Townsend, D. W., McGillicuddy, D. J. & Turner, J. T., (2005). The Ecology and Oceanography of Toxic Alexandrium Blooms in the Gulf of Maine. Deep Sea Research II, 52,19-21.
Babagoli Matikolaei, J., Aliakbari Bidokhti, A., & Shiea, M., (2019). Some aspects of the deep abyssal overflow between the middle and southern basins of the Caspian Sea. Ocean Sci., 15, 459–476.
Banks, J. R., Heinold, B., & Schepanski, K., (2022). Impacts of the desiccation of the Aral Sea on the Central Asian dust life cycle. Journal of Geophysical Research: Atmospheres, 127, e2022JD036618.
Buskay, E. J., Montagna, P. A., Amos, A.F., & Whitledge, T.E., (1997). Disruption of grazer population as a contributing factor to the initiation of the Texas brown tide algal bloom. Limnology & Oceanography, 42, 1215-1222.
Durand, D., Pettersson, L.H., Johannessen, O.M., Svendsen, E., Søiland, H., & Skogen, M. (2002). Satellite observation and model prediction of toxic algae bloom, Conference: Proceeding from the PORSEC Conference, At: Goa, India.
Ghanea, M., Moradi, M., & Kabiri, K., (2016). A novel method for characterizing harmful algal blooms in the Persian Gulf using MODIS measurements. Advances in Space Research. 58(7),1348-61.
Gill, A., (1982). Atmosphere-Ocean Dynamics, International Geophysics Series 30, Academic Press.
Harding, L. W., (1994). Long-term trends in the distribution of phytoplankton in Chesapeake Bay: roles of light, nutrients and streamflow. Mar. Ecol. Prog. Ser. 104:267-291.
Heuzé, C., Carvajal G.K., Eriksson LEB, & Soja-Woźniak M., (2017). Sea Surface Currents Estimated from Space-borne Infrared Images Validated against Reanalysis Data and Drifters in the Mediterranean Sea. Remote Sensing. 9(5):422.
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?per=DAY&day=16504&sub=level3&prm=CHL&set=10&ndx=0&mon=16467&rad=0&frc=0&dnm=D@M
https://earth.nullschool.net/#current/wind/surface/level/orthographic=52.08,40.82,2908 https://globalwindatlas.info/.
Ibrayev, R. A., Özsoy, E., Schrum, C., & Sur, H. İ., (2010). Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction. Ocean Sci., 6, 311–329, https://doi.org/10.5194/os-6-311-2010.
Lavrova, O. Y., Kostianoy, A. G., Bocharova, T. Y. & Strochkov, A. Y., (2024). Spatio-Temporal Variability of Algal Bloom in the Caspian Sea. Ecologica Montenegrina, 76, 14–48.
Mozafari, Z., Noori, R., Siadatmousavi, S. M., Afzalimehr, H., & Azizpour, J., (2023). Satellite-based monitoring of eutrophication in the Earth’s largest transboundary lake. GeoHealth, 7(5), e2022GH000770.
Modabberi, A., Noori, R., Madani, K., Ehsani, A. H., Danandeh Mehr, A., Hooshyaripor, F., & Kløve, B., (2020). Caspian Sea is atrophying: The alarming message of satellite data. Environmental Research Letters, 15 (12), 124047.
Kostianoy, Andrey G., Ginzburg, Anna I., Yu. Olga, Lavrova, Sergey, Lebedev, A., Mityagina, Marina I., Sheremetand, Nickolay A., and Soloviev, Dmitry M., (2019). Comprehensive Satellite Monitoring of Caspian Sea Conditions. Springer International Publishing AG, part of Springer Nature V. Barale and M. Gade (eds.), Remote Sensing of the Asian Seas.
Lahijani, H. Leroy, S. A. G. Arpe, K. Crétaux, J. F., (2023). Caspian Sea level changes during instrumental period, its impact and forecast: A review, Earth-Science Reviews, 241, 104428, 10.1016/j.earscirev.2023.104428.
Rahnemania, A., Aliakbari Bidokhti, A. A. and Babagoli J., (2022). Some physical properties of mesoscale eddies in the Caspian Sea basins based on numerical simulations'. Journal of the Earth and Space Physics, 47(40). 219-230.
Rajan, A. & Al-Abdessalaam, T. Z., (2006). Harmful algal blooms and eutrophication. Nutrient sources, composition and consequences in the Arabian Gulf bordering Abu Dhabi Emirate. Proceedings 12th International conference on harmful Algal Blooms, Copenhagen, 2006.
Roohi, A., Pourgholam, R., Ganjian Khenari, A., Kideys, E. A., Sajjadi, A. & Abdollahzade Kalantari, R., (2013). Factors Influencing the Invasion of the Alien Ctenophore Mnemiopsis leidyi Development in the Southern Caspian Sea, ECOPERSIA) International Journal of Natural Resources and Marine Sciences. IJNRMS, 1(3), 299-313.
Sarangi, R. K. (2012). Observation of oceanic eddy in the northeastern arabian sea using multisensor remote sensing data. International Journal of Oceanography, 2012(1), 531982.
Sarangi, R. K., Nayak, S., & Panigrahy, R. C. (2008). Monthly variability of chlorophyll and associated physical parameters in the southwest Bay of Bengal water using remote sensing data. Indian Journal of Marine Sciences, 37(3), 256-266.
Sedigh Marvasti, S., Gnanadesikan, A., Aliakbari Bidokhti, A. A., Dunne, J. P., & Ghader, S., (2016). Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman. Biogeosciences, 13, 1049–1069.
Sehat Kashani, S., Rahnama, M., Khoddam, N., Attarchi, S., (2022). The study of chlorophyll concentration behavior over southern coasts of Iran with an emphasis on the cold season of the year. International Journal of Coastal, Offshore and Environmental Engineering (ijcoe), 7(3), 1-9.
Smayda, T. J. (1997). Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and oceanography, 42(5part2), 1137-1153.
Sunda, W. G., Graneli, E. & Gobler C. J., (2006). Positive feedback and the development and persistence of ecosystem disruptive algal blooms. Journal of Phycology, 42, 963–974.
Tang, Q. S., Ying, Y.P. Wu, Q., (2016). The biomass yields and management challenges for the Yellow Sea large marine ecosystem. Environ. Dev., 17 (2016), 175-181,