شناسایی نوفه‌های موجود در رادارهای داپلر هواشناسی بوشهر و حذف آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشگاه هواشناسی و علوم جو، تهران، ایران.

چکیده

در پژوهش حاضر یک الگوریتم ساده برای از بین بردن نوفه‌های زمینی و اکوهای غیرعادی در داده‌های بازگشت‌پذیری رادار ارائه شده است به‌طوری‌که کمترین تأثیر را در حذف پدیده‌های هواشناسی داشته باشد. این الگوریتم در شرایط آسمان بارانی (پدیده خط تندوزه در تاریخ 19 مارس 2017 ساعت UTC04) با استفاده از داده‌های رادار داپلر هواشناسی بوشهر مورد استفاده قرار گرفته است که شامل دو فیلتر پیوستگی مکانی و تست فشردگی است. فیلتر پیوستگی مکانی برای هر پیکسل داده‌هایی را که از نظر مکانی، همبستگی ضعیفی با پیکسل‌های اطراف دارند حذف می‌کند بنابراین هنگامیکه تفاوت بین هر پیکسل با پیکسل‌های اطراف کمتر از یک آستانه مشخص  باشد، مقدار آن یک اکوی هواشناسی فرض می‌شود. تست فشردگی پیکسل‌های مجاور با شدت غیر صفر را مشخص می‌کند بنابراین، انتخاب یک آستانه دوم  بزرگ‌تر از یک، بیشتر نوفه‌ها را از بین می‌برد. جهت تعیین بهترین آستانه،  برای مقادیر 3 تا 8 و  بین 1/1 تا 6/2 مورد بررسی قرار گرفت. نتایج نشان داد که الگوریتم حاضر توانایی قابل‌توجهی در حذف نوفه‌های داده‌های بازگشت‌پذیری رادار را دارد. تغییر مقادیر  در بازه 3 تا 8 تأثیر قابل‌توجهی بر حذف نوفه‌ها نشان نداد. این موضوع احتمالاً به‌دلیل اشباع شدن  پس از دستیابی به آستانه مشخص رخ می‌دهد، که می‌تواند ناشی از همگنی بافت منطقه موردمطالعه (کنار دریا) باشد. همچنین آستانه  برابر با 8 و  برابر با8/1 با حذف بیشترین نوفه­های زمینی در داده‌های بازگشت‌پذیری رادار و همچنین حفظ سلول‌های همرفتی، بهترین نتیجه را نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of Clutter in Bushehr Weather Doppler Radars and Their Removal

نویسندگان [English]

  • Mahnaz Karimkhani
  • Mehdi Rahnama
Research Institute of Meteorology and Atmospheric Science, Tehran, Iran.
چکیده [English]

The word Radar from the term Radio Detection and Ranging means target radio tracking and ranging, an electromagnetic system that is used to detect and determine the position and speed of a target. Most meteorological radars are of Pulse-Doppler type, which have the ability to detect the movement of raindrops and the intensity of precipitation. Both types of this information can be analyzed to determine the structure of the storm and its potential for producing severe weather. Also, Doppler type radars measure rainfall and wind direction and speed at certain times and in a wide area. These types of radars display the position of the target and reflectivity with the help of a computer by combining colors on the display screens (Reinhart, 1997). Ground echo is a challenge for meteorological radar data analysis, especially in hydrology and precipitation estimation. Therefore, the removal of ground clutter is a prerequisite for the use of meteorological radar for both quantitative and qualitative purposes. An important part in the quality control of radar data is the removal of clutter.
Several researches have been conducted to provide different algorithms for removing ground clutter and abnormal echoes emitted by radar data (Gabela and Notarpietro, 2002; Layton et al., 2013; Zheng et al., 2016; Kaman et al., 2018; Proft et al., 2019; Adaba et al., 2021; Xie et al., 2021; Wang et al., 2022; Yan et al., 2020).
The aim of the current research is to present a simple and fast algorithm by selecting the most appropriate thresholds to remove ground clutter and unusual echoes presented in radar reflection data, so that it has the least impact on showing meteorological phenomena.
In the present study, the effectiveness of removing ground clutter as well as determining the best thresholds has been quantitatively evaluated on the meteorological Doppler radar of Bushehr, located in the southwest of Iran.
This algorithm has been used in rainy condition (squall line event On March 19, 2017 at 04:00UTC) using the Bushehr Doppler Weather Radar data which includes spatial-proximity filter and compactness test. The spatial-continuity filter that is applied to each pixel eliminates data that are weakly and spatially correlated to the surrounding. Therefore, when the difference between each pixel and the surrounding pixels is less than a certain threshold , its value is assumed to be a meteorological echo. The compactness test identifies adjacent pixels of not null intensity; thus, choosing a threshold level  slightly greater than one, will eliminate most of the unwanted clutter. To determine the best threshold,  for 3 to 8 values and  between 1.1 to 2.6 are examined.
Removal of ground noises in Bushehr weather Doppler radar reflection data equal to 3, 4, 5, 6, 7 and 8 and  with a threshold of 1.1 for 04UTC on March 19, 2017 showed that the difference in does not make a significant change in the removal of clutter.
Due to the fact that the change in  does not have much change in the removal of clutter, so in the following, is equal to 8 and the change in  is examined. The results showed that the present algorithm has a significant ability to remove the ground clutter from the Doppler radar reflectivity data. Varying the  values from 3 to 8 did not have a significant effect on noise removal. This is likely due to the saturation of  after reaching a certain threshold, which may result from the homogeneity of the area's texture (coastal region). Also, in the examined thresholds,  equal to 8 and  equal to 1.8 has the best result by removing most ground clutters and unusual echoes in the radar reflectivity data, as well as preserving storm convective cells.

کلیدواژه‌ها [English]

  • Ground Clutter
  • Radar Reflectivity Radar
  • Squall line Event
  • Bushehr Doppler Weather Radar
صفر، م.؛ احمدی گیوی، ف. و گلستانی، ی. (1395). کنترل کیفی داده‌های رادار هواشناسی با استفاده از ساختار افقی و قائم برگشت پذیری. مجله ژئوفیزیک ایران، 10، 120-131.
Addabbo, P., Han, S., Biondi, F., Giunta, G., & Orlando, D. (2021). Adaptive Radar Detection in the Presence of Multiple Alternative Hypotheses Using Kullback-Leibler Information Criterion-Part II: Applications. IEEE Transactions on Signal Processing, 69, 3742–3754.
Boothe, R.R. (1969). The Weibull distribution applied to the ground clutter backscatter coefficient, Tech. Rep. No. RE-69-15, U.S. Army Missile Command, Redstone Arsenal, AL.
Bebbington, D., Rae, S., Bech, J., Codina, B., & Picanyol, M. (2007). Modeling of weather radar echoes from anomalous propagation using a hybrid parabolic equation method and NWP model data. Natural Hazards and Earth System Sciences, 7, 391–398.
Bech, J., Gjertsen, U., & Haase, G. (2007). Modeling weather radar beam propagation and topographical blockage at northern high latitudes. Quart. J. Roy. Meteorol. Soc, 133, 1191–1204.
Czerkawski, M., Ilioudis, C., Clemente. C., Michie, C., Andonovic, L. & Tachtatzis, C. (2021). Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network. 2021 IEEE Radar Conference (RadarConf21).
Geotis S.G., & Silver, W.M. (1976). An evaluation of techniques for automatic ground-echo rejection. Preprints. 17th Conf. Radar Meteorology, Seattle, WA, Amer. Meteor. Soc, 448-452.
Germann, U., & Joss, J. (2001). Variograms of radar reflectivity to describe the spatial continuity of alpine precipitation. J. Appl. Meteor, 40, 1042-1059.
Gabella, M., & Notarpietro. R. (2002). Ground clutter characterization and elimination in mountainous terrain. Proceedings of ERAD, 305-311.
Gekat, F., Meischner, P., Friedrich, K., Hagen, M., Koistinen, J., Michelson, D. B., & Huuskonen, A. (2004). The state of weather radar operations, networks and products: In: Weather radar. Principles and advanced applications, P. Meischner, (Ed.), 1–51.
Germann, U., & Joss, J. (2004). Operational measurement of precipitation in mountainous terrain: In: Weather radar. Principles and advanced applications, P. Meischner, (Ed.), 52–77.
Gao. X., Roy. S. & Zhang. L. (2023). Static Background Removal in Vehicular Radar: Filtering in Azimuth-Elevation-Doppler Domain. IEEE Sensors Journal. 99, 1-12.
Harris, D., Foufoula-Georgiou, E., Droegemeier, K.K., & Levit, J.J. (2001). Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeorology, 2, 406-418.
Hubbert, J. C., Bringi, V. N., & Brunkow, D. (2003). Studies of the polarimetric covariance matrix: Part I: Calibration methodology. J. Atmos. Ocea. Tech, 20(5), 696–706.
Joss, J., & Lee, R. (1995). The application of radar-gauge comparisons to operational precipitation profile corrections. J. Appl. Meteorol, 34, 2612-2630.
Joss, J., & Coauthors. (1998). Operational use of radar for precipitation measurements in Switzerland. Vdf Hochschulverlag AG an der ETH Zurich, 108 pp.
Kerr, D.E. (1987). Propagation of short radio waves. Peregrinus Ltd. London, UK.
Kamann, A., Held, P., Perras, F., Zaumseil, P., Brandmeier, T. & Schwarz, U. T. (2018). Automotive Radar Multipath Propagation in Uncertain Environments. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE.
Linell, T. (1966). An experimental investigation of the amplitude distribution of radar terrain return, 6th Conf. of the Swedish National Committee on Scientific Radio.
Liu, L., Guan. R., Ma, F., Smith. J. & Yue. J. (2023). Radar-STDA: A High-Performance Spatial-Temporal Denoising Autoencoder for Interference Mitigation of FMCW Radars. JOURNAL OF LATEX CLASS FILES. 14, 1-11.
Li, j., Youn, J., Wu, R., Overdevest, J. & Sun, S. (2024). Performance Evaluation and Analysis of Thresholding-based Interference Mitigation for Automotive Radar Systems. 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW).
Prophet, R., Martinez, J., Michel, J.-C. F., Ebelt, R., Weber, I. & Vossiek, M. (2019). Instantaneous Ghost Detection Identification in Automotive Scenarios. in 2019 IEEE Radar Conference (RadarConf). IEEE.
Rinehart, R. (1997). RADAR for Meteorologists. Rinehart Pub. AUSTELL, GA, U.S.A.
Steiner, M., & Smith, J. A. (2002). Use of threedimensional reflectivity structure for automated detection and removal of nonprecipitation echoes in radar data. J. Atmos. Ocea. Tech, 19, 673–686.
Salek, M., Cheze, J.-L., Handwerker, J., Delobbe, L., & Uijlenhoet, R. (2004). Radar techniques for identifying precipitation type and estimating quantity of precipitation. COST Action 717: Final Report, COST Office, Luxembourg.
Wallace, P.R. (1953). Interpretation of the fluctuating echoes from randomly distributed scatterres, part II, Can. J. Phys, 31, 995-1009.
Wang, T., Xu, D., Hao, C., Addabbo, P. & Orlando, D. (2022). Clutter Edges Detection Algorithms for Structured Clutter Covariance Matrices. IEEE Signal Processing Letters, 29, 642–646.
Xu, D., Addabbo, P., Hao, C., Liu, J., Orlando, L. & Farina, A. (2021). Adaptive strategies for clutter edge detection in radar. Signal Processing, 186, p. 108127.
Yan, L., Addabbo, P., Hao, C., Orlando, D. & Farina, A. (2020). New ECCM Techniques Against Noise-like and/or Coherent Interferers. IEEE Transactions on Aerospace and Electronic Systems, 56, 1172– 1188.
Zheng, G., Zeng, Y. & Gao, L. (2016). The simulation method of statistical MIMO radar's clutter. Asia-Pacific International Symposium on Electromagnetic Compatibility, 1139-1141.
Zhou, Y., Cao, R., Zhang, A., & Li, P. (2024). An Interference Mitigation Method for FMCW Radar Based on Time–Frequency Distribution and Dual-Domain Fusion Filtering. Sensors, 24(11), 3288. https://doi.org/10.3390/s24113288.