برآورد میدان سرعت پوسته زمین با استفاده از شبکه عصبی مصنوعی و انترپولاسیون کریژینگ فراگیر (منطقه مورد مطالعه: شبکه ژئودینامیک کشور ایران)

نویسندگان

1 دانشگاه صنعتی خواجه نصیرالدین طوسی دانشکده نقشه برداری گروه ژئودزی

2 استاد گروه ژئودزی دانشکده نقشه برداری دانشگاه خواجه نصیرالدین طوسی

چکیده

در این مقاله از 2 روش شبکه عصبی مصنوعی (ANN) و درونیابی کریژینگ فراگیر جهت برآورد مکانی تغییرات سرعت پوسته زمین در ایران استفاده شده است. در هر 2 روش جهت تست و ارزیابی نتایج بدست آمده از 7 ایستگاه GPS که مقادیر سرعت آنها نسبت به صفحه اوراسیا معلوم بوده، استفاده شده است. میانگین خطای نسبی بدست آمده از این مقایسه 48/13+ درصد برای شبکه عصبی و 38/25+ درصد برای روش کریژینگ فراگیر در مولفه شمالی (VN) از 7 ایستگاه تست می باشد. برای مولفه شرقی (VE) میدان سرعت، میانگین خطای نسبی 12/18+ درصد برای شبکه عصبی و 61/28+ درصد برای روش کریژینگ فراگیر از ایستگاههای تست بدست آمده است. همچنین جذر خطای مربعی میانگین (RMSE) در روش شبکه عصبی مصنوعی برای مولفه شمالی1± میلیمتر و برای مولفه شرقی5/1± میلیمتر بدست آمده است. برای روش کریژینگ فراگیر در مولفه شمالی 8/2± میلیمتر و برای مولفه شرقی1/3± میلیمتر محاسبه شده است. نتایج بدست آمده نشاندهنده قابلیت و کارائی بالای روش شبکه های عصبی مصنوعی در برآورد مکانی میدان سرعت پوسته زمین در این منطقه می باشد. در مورد روش کریژینگ نتایج بیانگر این موضوع است که پراکندگی و تعداد نقاط مورد نیاز در مرحله آموزش و تعیین ضرایب در نتایج بدست آمده بسیار دخیل می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Velocity Field Using Artificial Neural Networks and Kriging Interpolation (Case Study: Iran Geodynamic GPS Network)

نویسندگان [English]

  • Mir Reza Ghaffari Razin 1
  • Behzad Voosoghi 2
1
2
چکیده [English]

In this paper, two methods have been used: multi-layer perceptron artificial neural network (ANN-MLP) and universal kriging to estimate of velocity field. Neural network is an information processing system which is formed by a large number of simple processing elements, known as artificial nerves. It is formed by a number of nodes and weights connecting the nodes. The input data are multiplied by the corresponding weight and the summation are entered into neurons. Each neuron has an activation function. Inputs pass to the activation function and determine the output of neurons. The number of neurons and layers could be obtained through trial and error according to a specific problem.
One of the simplest and effective methods to use in modeling of real neurons is multi-layer perceptron neural network. This model has been established of one input layer, one or more hidden layers and one output layer. In this structure, all the neurons in one layer are connected to all neurons of the next layer. This arrangement is commonly called a network with full connectivity. Neuron numbers in each layer is determined independently. The neurons of input and output layers are determined according to the number of input and output parameters. The number of neurons in the hidden layer can be determined by trial and error through minimizing total error of the ANN. For this minimization, each ANN parameter’s share in the total error should be computed which can be achieved by a back-propagating algorithm.
One of the most famous and simplest methods is back-propagation algorithm which trains network in two stages: feed-forward and feed-backward. In feed-forward process, input parameters move to output layer. In this stage, output parameters are compared with known parameters and the errors is identified. The next stage is done feed-backward. In this stage, the errors move from output layer to input layer. Again, the input weights are calculated. These two stages are repeated until the errors reaches a threshold expected for output parameters.
Kriging is probably the most widely used technique in geostatistics to interpolate data. Kriging interpolation is a two-step process: first a regression function f(x) is constructed based on the data and a gaussian process Z is constructed through the residuals:
Y(x) =f(x) + Z(x)
where f(x) is a regression function and Z is a gaussian process with mean 0, variance σ2 and a correlation matrix ψ .Depending on the form of the regression function, kriging has been prefixed with different names. Simple kriging assumes the regression function to be a known constant, f(x) = 0. A more popular version is ordinary kriging, which assumes a constant but unknown regression function f(x) = α0. In universal kriging, more complex trend functions such as linear or quadratic polynomials are used.
In two methods, for testing and validation of results, 7 GPS station have been used. The velocity field of these stations is known with respect to Eurasia. The average relative error in test stations is obtained 13.48% for ANN-MLP and 25.38% universal kriging in northern component (VN). Also in eastern component (VE) the average relative error is obtained 18.12% for ANN-MLP and 28.61% for universal kriging. The results show the capability and efficiency of artificial neural networks approach for estimation of velocity field in this region. Another important result obtained from this research indicates that distribution and number of input points are very effective in training stage and coefficients determine.

کلیدواژه‌ها [English]

  • Artificial Neural Network
  • crustal velocity
  • back-propagation algorithm
  • Kriging interpolation
  • GPS data
معماریان، ا. و جمور، ی.، 1392، بررسی کارایی شبکه‌های عصبی مصنوعی در تخمین سرعت نقاط ژئودتیک، پایان‌نامۀ کارشناسی ارشد، زمستان 1392.
انصاری، ح. و داوری، ک.، 1386، پهنه‌بندی دورۀ خشک با استفاده از شاخص بارندگی استانداردشده در محیط GIS مطالعۀ موردی: استان خراسان، پژوهش‌های جغرافیایی، 60، تابستان 1386.
 
 
 
Bogusz, J., Klos, A., Grzempowski, P. and Kontny, B., 2013, Modelling the velocity field in a regular grid in the area of poland on the basis of the velocities of European permanent stations, Pure and Applied Geophysics, doi: 10.1007/s00024-013-0645-2.
Chen, R., 1991, On the horizontal crustal deformations in Finland, Helsinki, Finish Geodetic Institute.
Coukuyt, I., Dhaene, T. and Demeester, P, 2013, ooDace toolbox: a matlab Kriging toolbox, getting started.
Gullu, M., Yilmaz, I., Yilmaz, M. and Turgut, B., 2011, An alternative method for estimating densification point velocity based on back propagation artificial neural networks, Studia Geophysica et Geodaetica, 55(1), 73-86.
Ghaffari Razin, M. R. and Mohammadzadeh, A., 2015, 3-D crustal deformation analysis using isoparametric method and multi-layer artificial neural networks (Case Study: Iran), Engineering Journal of Geospatial Information Technolog,  2015; 2 (4) :1-15.
Ghaffari Razin M. R. Voosoghi, B. Mohammadzadeh, A., 2015, Efficiency of artificial neural networks in map of total electron content over Iran. Acta Geod Geophys, DOI 10.1007/s40328-015-0143-3.
Ghaffari Razin M. R.  and Voosoghi, B., 2016, Modeling of ionosphere time series using wavelet neural networks (case study: N-W of Iran), Advances in Space Research. doi: http://dx.doi.org/10.1016/j.asr. 2016.04.006.
Haykin, S., 1994, Neural networks, a comprehensive foundation, Macmillan College Publishing Company, New York.
Mars, P., Chen, J. R. and Nambiar, R., 1996, Learning algorithms: theory and applications in signal processing, Control and Communications, CRC Press, Boca Raton, Florida.
Mashhadi Hossainali, M., 2006, A comprehensive approach to the analysis of the 3Dkinematics of deformation, Ph.D. thesis, Geodesy, Darmstadt, University of Darmstadt.
Matheron, G., 1971, The theory of regionalized variables, and its applications, Centre de Geostatistique, Fontainebleau, Paris.
Moghtased-Azar, K. and Zaletnyik, P., 2009, Crustal velocity field modeling with neural network and polynomials, in: Sideris, M.G., (Ed.), Observing our changing Earth, International Association of Geodesy Symposia, 133, 809-816.
Norgaard, M., 1997, Neural network based system identification toolbox, Technical Report, 97-E-51, Department of Automation, Technical University

of Denmark, Copenhagen, Denmark, 37p.
Segal, P. and Matthews, M. V., 1988, Displacement calculations from geodetic data and the testing of geophysical deformation models, Joural of Geophys. Research, 93, 14 954-14 966.
Simpson, P. K., 1990, Artificial neural systems: foundations, paradigms, applications, and implementations, Pergamon Press, New York.
Stanley, J., 1990, Introduction to neural networks, 3rd edition, Sierra Madre, California Scientific Software.
VanGorp, S., Masson, F. and Chéry, J., 2006, The use of Kriging to interpolate GPS velocity field and its application to the Arabia-Eurasia collision zone, Geophysical Research Abstracts, 8, 02120.
Voosoghi, B., 2000, Intrinsic deformation analysis of the earth surface based on 3-D displacement fields derived from space geodetic measurements, PhD Thesis, Department of Geodesy and Geoinformatics, Stuttgart University
Yilmaz, M., 2013, Artificial neural networks pruning approach for geodetic velocity field determination, BCG - Boletim de Ciências Geodésicas.