سالیتون‌های یون- صوتی در پلاسمای دور از تعادل بادهای خورشیدی

نویسنده

استادیار، گروه فیزیک، دانشکده علوم پایه، دانشگاه نیشابور، نیشابور، ایران

چکیده

در این مقاله، با استفاده از روش اختلالی کاهنده و اعمال آن بر روی معادلات دینامیک سیال پلاسمایی و با به‌کار بردن یک تابع توزیع غیر ماکسولی که توسط یک شاخص طیفی ناوردای  و یک پارامتر مستقل  (تعداد درجات آزادی وابسته به پتانسیل اختلالی) برچسب زده می‌شود، یک معادله کورته وگ-دی وری (KdV) تعمیم‌یافته برای سالیتون‌های یون-صوتی در پلاسمای بادهای خورشیدی استخراج شده است، به‌طوری‌که در‌برگیرنده حالت‌های نزدیک تعادل و دور از تعادل گرمایی است. در اینجا شاخص طیفی  میزان انحرافات از حالت تعادل در پلاسمای باد خورشیدی را توصیف می‌کند و خود به تعداد درجات آزادی پلاسما بستگی ندارد. حالت‌های نزدیک به تعادل که در آن شاخص طیفی با مقادیر  توزیع شده است، عمدتاً برای نواحی داخلی هورسپهر (Heliosphere) کاربرد دارد، و حالت‌های دور از تعادل که با مقادیر  توصیف می‌شوند، مربوط به نواحی پوش خورشیدی (Heliosheath) هستند. حل تحلیلی معادله KdV تعمیم‌یافته محاسبه شده است و جواب سالیتونی آن استخراج شده است. سپس اثرات شاخص طیفی ، تعداد درجات آزادی وابسته به پتانسیل اختلالی و سرعت پالس روی ضریب پاشندگی تعمیم‌یافته () و ضریب غیرخطیت تعمیم‌یافته () در معادله KdV و همچنین روی ساختار سالیتون‌ها به‌طور عددی بررسی شده‌اند. ملاحظه می‌شود که جواب سالیتونی به‌دست آمده تابع حساسی وابسته به شاخص طیفی  می‌باشد و علاوه‌بر این به تعداد درجات آزادی وابسته به پتانسیل اختلالی نبز وابستگی دارد. بسته به مقادیر  و  امکان وقوع سالیتون‌های یون- صوتی با پتانسیل مثبت و منفی پیش‌بینی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Ion-acoustic Solitons in Solar Winds Plasma Out of Thermal Equilibrium

نویسنده [English]

  • Ehsan Saberian
Assistant Professor, Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur, Iran
چکیده [English]

In this paper, by applying the reductive perturbation method to the plasma fluids equations and by using a non-Maxwellian distribution function which is labeled via an invariant spectralindex  and an independent parameter  as the potential degrees of freedom via perturbation, a generalized Korteweg-de Vries (KdV) equation is derived for the ion-acoustic solitons in Solar winds plasma, which involves near-equilibrium and out of thermal equilibrium states. Here, the spectralindex  describes the deviations from thermal equilibrium of plasma and itself is independent of the number of degrees of freedom of plasma. The near-equilibrium states where the spectral indices are distributed with the values of  are applied for the inner Heliosphere regions, and the far-equilibrium states which are described by the spectral indices as  that belongs to the Heliosheath regions. The analytical solution to the generalized KdV equation is calculated and its solitary wave solution is derived. Then, effects of the spectralindex , the potential degrees of freedom via perturbation , and the speed of pulse on the generalized dispersion coefficient () and generalized nonlinear coefficient () of KdV equation, and also on the structure of the ion-acoustic solitons are studied numerically.  
It is found that in the asymptotic limit of , it indicates a plasma in thermal equilibrium and the generalized KdV equation reduces to the standard KdV equation and its solitary wave solution. We show that the generalized dispersion coefficient  tends smoothly to the standard limit of  in the near-equilibrium states as , while it tends to zero in out of thermal equilibrium regions as . Furthermore, the generalized nonlinear coefficient  has negative large values in far-equilibrium states with ,while it tends smoothly to the standard limit of  in the case of an equilibrium plasma with . Moreover, the invariant spectral index has a critical value  in the far-equilibrium states, where for the generalized nonlinear coefficient  has positive values and for the generalized nonlinear coefficient  has negative values.
We found that in the vicinity of , corresponds to the escape state (where the transitions between near-equilibrium and far-equilibrium states happens), the variations of the coefficients  and  are considerable.
We also found that the generalized dispersion coefficient () and the generalized nonlinear coefficient () depend on the potential degrees of freedom via perturbation, but their dependences are not considerable.
Futhermore, depending on the values of the parameters  and , the occurrence of ion-acoustic solitons with both positive and negative potentials is possible. In the near-equilibrium states () only positive polarity solitons are possible, which is in consistence with the standard KdV theory. But, the occurrence of negative polarity solitons is predicted in the far-equilibrium states with .
Analyzing of the solitary wave profile shows that the amplitude and steepening of the ion-acoustic solitons grows in far-equilibrium states, labeled via indices . It is because of the existence of more fraction of suprathermal particles, which provide more effective interactions with the soliton and make it more prominent. Furthermore, propagation of a soliton with more speed results in a pulse with larger amplitude and narrower width, in consistence with the standard KdV theory.
Moreover, examining the results with the various degrees of freedom, shows that the amplitude and steepening of the ion-acoustic solitons decrease with an increase in the potential degrees of freedom via perturbation. It is to be noted that for a perturbed potential as in KdV theory, the potential degrees of freedom  has small values. 
Finally, we have analytically derived the amplitude () and the width () of the ion-acoustic solitons as functions of the spectral index  and the potential degrees of freedom .Then, numerical plotting of  and  with respect to  for various values of  has confirmed the mentioned results.

کلیدواژه‌ها [English]

  • Non-Maxwellian distribution function
  • Invariant kappa index
  • degrees of freedom
  • Soliton
  • Korteweg-de Vries equation
  • Solar wind
Adnan, M., Mahmood, S. and Qamar, A., 2014, Small amplitude ion acoustic solitons in a weakly magnetized plasma with anisotropic ion pressure and kappa distributed electrons, Advances in Space Research, 53, 845-852.

Akter, T., Deeba F. and Kamal-Al-Hassan, M., 2016, Electron-Acoustic Solitary Waves in a Two-Temperature Plasma Having Electrons With Kappa Distribution, IEEE Transactions on Plasma Science, 44, 1449.

Baluku, T. K. and Hellberg, M. A., 2012, Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons, Phys. Plasmas, 19, 012106.

Baluku, T. K., Hellberg, M. A. and Mace, R. L., 2011, Electron acoustic waves in double‐kappa plasmas: Application to Saturn's magnetosphere, J. Geophys. Res., 116, A04227.

Chen, H. and Liu, S.Q., 2012, Electron-acoustic solitary structures in two-electron-temperature plasma with superthermal electrons, Astrophys. Space Sci., 339, 179.

Danehkar, A., Saini, N. S., Hellberg, M. A. and Kourakis, I., 2011, Electron-acoustic solitary waves in the presence of a suprathermal electron component, Physics of Plasmas, 18, 072902.

Davidson, R. C., 1972, Methods in nonlinear plasma theory, Academic Press.

Devanandhan,S., Singh, S. V., Lakhina, G. S. and R. Bharuthram, 2011, Electron acoustic solitons in the presence of an electron beam and superthermal electrons, Nonlin. Processes Geophys., 18, 627-634.

El-Awady, E. I., El-Tantawy, S. A., Moslem, W. M. and Shukla, P. K., 2010, Electron–positron–ion plasma with kappa distribution: Ion acoustic soliton propagation, Phys. Letters A, 374, 3216 – 3219.

Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D., and Gary, S. P., 1975, Solar wind electrons, J. Geophys. Res., 80, 4181.

Livadiotis, G., 2017, Kappa distributions: Theory and applications in Plasmas, Elsevier.

Livadiotis, G. and McComas, D. J., 2011a, Invariant Kappa Distribution in Space Plasmas Out of Equilibrium, Astrophys. J., 741, 88.

Livadiotis, G. and McComas, D. J., 2011b, The Influence of Pick-up Ions on Space Plasma Distributions, Astrophys. J., 738, 64.

Livadiotis, G., McComas, D. J., Dayeh, M. A., Funsten, H.O. and Schwadron, N.A., 2011, First Sky Map of the Inner Heliosheath Temperature Using IBEX Spectra, Astrophys. J., 734, 19.

Maksimovic, M., Pierrard, V. and Riley, P., 1997, Ulysses electron distributions fitted with Kappa functions, Geophys. Res. Lett., 24, 1151.

Mahmood, S. and Akhtar, N., 2008, Ion acoustic solitary waves with adiabatic ions in magnetized electron-positron-ion plasmas , Eur. Phys. J. D, 49, 217.

Mamun, A. A., 1997, Effects of ion temperature on electrostatic solitary structures in nonthermal plasmas, Phys. Rev. E, 55, 1852-1857.

Michael, M., Willington, N. T., Jayakumar, N., Sebastian, S., Sreekala, G. and Venugopal, C., 2016, Korteweg–deVries–Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions, J. Theor. Appl. Phys. 10, 289-296.

Pierrard, V. and Lazar, M., 2010, Kappa Distributions: Theory and Applications in Space Plasmas, Sol Phys., 267, 153-174.

Pilipp, W. G., Miggenrieder, H., Montgomery, M. D., Mühlhäuser, K. H., Rosenbauer, H. and Schwenn, R., 1987, Characteristics of electron velocity distribution functions in the solar wind derived from the Helios Plasma Experiment, J. Geophys. Res., 92, 1075.

Saberian, E., Esfandyari-Kalejahi, A., Afsari-Ghazi, M. and Rastakar-Ebrahimzadeh, A., 2013, Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation, Phys. Plasmas, 20, 032307.

Sahu, B., 2010, Electron acoustic solitary waves and double layers with superthermal hot electrons, Phys. Plasmas, 17, 122305.

Saini, N. S., Kourakis, I. and Hellberg, M. A., 2009, Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons, Phys. Plasmas, 16, 062903.

Shah, A. and Saeed, R., 2011, Nonlinear Korteweg–de Vries–Burger equation for ion-acoustic shock waves in the presence of kappa distributed electrons and positrons, Plasma Physics and Controlled Fusion, 53, 095006.

Sultana,S., Kourakis, I., Saini,N. S. and Hellberg, M. A., 2010, Oblique electrostatic excitations in a magnetized plasma in the presence of excess superthermal electrons, Phys. Plasmas, 17, 032310.

Vasyliunas, V. M., 1968, A survey of low‐energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839-2884.

Verheest, F., Hellberg, M. A. and Lakhina, G. S., 2007, Necessary conditions for the generation of acoustic solitons in magnetospheric and space plasmas with hot ions, Astrophys. Space Sci. Transactions, 3, 15-20.

Washimi, H. and Taniuti, T., 1966, Propagation of Ion-Acoustic Solitary Waves of Small Amplitude, Phys. Rev. Lett., 17, 966.

Zouganelis, I., 2008, Measuring suprathermal electron parameters in space plasmas: Implementation of the quasi-thermal noise spectroscopy with kappa distributions using in situ Ulysses/URAP radio measurements in the solar wind, J. Geophys. Res., 113, A08111.