Combination of Artificial Neural Network and Genetic Algorithm to Inverse Source Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model Conjunction

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Ph.D. Student, Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 Assistant Professor, Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran

چکیده

In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its surrounding area are processed to derive the map of line of sight (LOS) displacement over the study area. Then, using the ascending and descending tracks of the satellite, the three-dimensional displacement field is recovered over the region. The maximum horizontal and vertical displacements are about 12 cm and 5 cm respectively. The resulting displacement field is compared with Okada half-space dislocation model of earthquake to determine the focal mechanism and fault parameters by a nonlinear inversion method, which is composed of artificial neural network (ANN) and genetic algorithm (GA). The coulomb stress and strain changes, which are important factors for prediction of aftershock event, are also determined. The numerical achievements show a slip of 4.5 mm, a depth of 8 km, dip angle of 55 deg and width of 10 km for this fault.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Combination of Artificial Neural Network and Genetic Algorithm to Inverse Source Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model Conjunction

نویسندگان [English]

  • Saeid Haji Aghajany 1
  • Mahmood Pirooznia 1
  • Mehdi Raoofian Naeeni 2
  • Yazdan Amerian 2
1 Ph.D. Student, Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 Assistant Professor, Department of Geodesy, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its surrounding area are processed to derive the map of line of sight (LOS) displacement over the study area. Then, using the ascending and descending tracks of the satellite, the three-dimensional displacement field is recovered over the region. The maximum horizontal and vertical displacements are about 12 cm and 5 cm respectively. The resulting displacement field is compared with Okada half-space dislocation model of earthquake to determine the focal mechanism and fault parameters by a nonlinear inversion method, which is composed of artificial neural network (ANN) and genetic algorithm (GA). The coulomb stress and strain changes, which are important factors for prediction of aftershock event, are also determined. The numerical achievements show a slip of 4.5 mm, a depth of 8 km, dip angle of 55 deg and width of 10 km for this fault.

کلیدواژه‌ها [English]

  • InSAR
  • Okada
  • ANN
  • GA
  • Sefid-Sang earthquake
  • Fault parameters
  • Coulomb stress
Ahmad, F., Mat-Isa, N., Hussain, Z., Boudville, R. and Osman, M., 2010, Genetic Algorithm-Artificial Neural Network (GA-ANN) hybrid intelligence for cancer diagnosis. Proceedings of the 2nd International Conference on Computational Intelligence, Communication Systems and Networks (CICSYN '10), pp. 78.
Akbari, M., Ghafoori, M. Moghaddas, N. H. and Lashkaripour, G. R., 2011, Seismic microzonation of Mashhad city, northeast Iran, Annals of Geophysics, 54(4), 424-434.
Ambraseys, N. N. and Melville, C. P., 1982, A History of Persian Earthquakes, Cambridge University Press, Cambridge, UK, 219 pp.
Byerlee, J., 1978, Friction of rocks, Pure Appl. Geophys., 116, 615–626.
Cattin, R., Chamot-Rooke, N., Pubellier, M., Rabaute, A. Delescluse, M. Vigny, C. Fleitout, L. and Dubernet, P., 2009, Stress change and effective friction coefficient along the Sumatra-Andaman-Sagaing fault system after the 26 December 2004 (Mw = 9.2) and the 28 March 2005 (Mw = 8.7) earthquakes, Geochem. Geophys. Geosyst., 10, Q03011, doi:10.1029/2008GC002167.
Cocco, M. and Rice, J. R., 2002, Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions, J. Geophys. Res., 107(B2), 2030, doi:10.1029/2000JB000138.
Del Frate, F., Ferrazzoli, P. and Schiavon, G., 2003, Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks. Remote Sens. Environ, 84:174–183.
Del Frate, F. and Salvatori, L., 2004, Oil spill detection by means of neural network algorithms: a sensitivity analysis. Proceedings of the Geoscience and Remote Sensing Symposium, IGARSS '04. Anchorage (AK): IEEE International, 2, 1370--1373.
Fattahi, H. and Amelung, F., 2016, InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophysical Research Letters, 43(16): 83998406.
Fialko, Y., Simons, M. and Agnew, D., 2001, The Complete (3-D) Surface Displacement Field in the Epicentral Area of the 1999 M(W) 7.1 Hector Mine Earthquake, California, from Space Geodetic Observations. Geophysical Research Letters, 28(16), 3063–3066. doi:10.1029/2001GL013174.
Furuya, M. and Satyabala, S. P., 2008, Slow earthquake in Afghanistan detected by InSAR, Geophys. Res. Lett., 35(6), doi:10.1029/2007GL033049.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co., Reading, Massachusetts, 412 pp. 17. Han, S.C., Shum, C.K., Bevis, M., Ji C., Kuo, C.Y., 2006. Crustal dilatation.
Guangyu Xu., Caijun Xu., Yangmao Wen., 2018, Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: Rupture of a blind reserve-slip fault near the Eastern Kopeh Dagh. Tecto, doi:10.1016/j.tecto.2018.03.009.
Haji-Aghajany, S., Voosoghi, B. and Yazdian, A., 2017, Estimation of north Tabriz fault parameters using neural networks and 3D tropospherically corrected surface displacement field. Geomatics, Natural Hazards and Risk. doi.org/10.1080/19475705.2017.1289248.
Haupt, R. L and Haupt, S. E., 2004, Practical Genetic Algorithms, 2nd Edition, John Wiley & Sons Inc.
Huadong, G., Xinyuan, W., Xinwu, L., Guang, L., Lu, Z. and Shiyong, Y., 2010, Yushu earthquake synergic analysis study using multi-modal SAR datasets. Chinese Science Bulletin, 55(31), 34993503.
Jolivet, R., Lasserre, C., Doin, M., Guillaso, S., Peltzer, G., Dailu, R., Sun, J., Shen, Z. and Xu, X., 2012, Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. Journal of Geophysical Research, 117, http://dx.doi.org/10.1029/2011JB008732.
Kaneko, Y., Fialko, Y., Sandwell, D. T., Tong, X. and Furuya, M., 2013, Interseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rate-and-state friction properties, J. Geophys. Res. Solid Earth, 118(1), 316–331, doi:10.1029/2012JB009661.
Kawasaki, I., Asai, Y., Tamura, Y., Sagiya, T., Mikami, N., Okada, Y., Sakata, M. and Kasahara, M., 1995, The 1992 Sanriku-Oki, Japan, ultraslow earthquake, J. Phys. Earth, 43, 105–116.
Khodaverdian, A., Zafarani, H. and Rahimian, M., 2015, Long term fault slip rates, distributed deformation rates and forecast of seismicity in the Iranian Plateau, Tectonics, 34, 2190–2220, doi:10.1002/2014TC003796.
Michalewicz, Z., 1992, Genetic Algorithm+ Data Structures =Evolution Programs. Springer Verlag, Berlin, 340 pp.
Maruyama, T., 1964, Statical elastic dislocation in an infinite and semi-infinite medium. Bull Earthq. Res. Inst., 42, 289-368.
Motagh, M., Bahroudi, A., Haghighi, M. H., Samsonov, S., Fielding, E. and Wetzel, H.U., 2015, The 18 August 2014 Mw 6.2 Mormori, Iran, Earthquake: A thin - skinned faulting in the Zagros Mountain inferred from InSAR measurements. Seismological Research Letters, 86(3), 775782.
Okada, Y., 1985, Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am., 75, 1135-1154.
Sandwell, D., Mellors, R., Tong, X., Wei, M. and Wessel, P., 2011, An InSAR Processing System Based on  Generic Mapping Tools. Scrips Institution of Oceanography Technical Report, University of California, San Diego.
Sangwan, K., Saxena, S. and Kant, G., 2015, Optimization of machining parameters to minimize surface roughness using integrated ANN-GA approach. Proceedings of the 22nd CIRP Conference on Life Cycle Engineering (LCE '15), 29, 305–310, Sydney, Australia.
Steketee, J. A., 1958a, On Volterra’s dislocations in a semi-infinite elastic medium. Can. J. Phys., 36, 192–205.
Steketee, J. A., 1958b, Some geophysical applications of the elasticity theory of dislocations. Can. J. Phys., 36, 1168–1198.
Walker, R., Jackson, J. and Baker, C., 2003, Thrust faulting in eastern Iran: source parameters and surface deformation of the 1978 Tabas and 1968 Ferdows earthquake sequences, Geophys. J. Int., 152, 749–765.
Wang, X. P. and Cao, L. M., 2002, Genetic Algorithm: Theory, Application and Software, Xian Transportation University Press, Xian.
Wang, R. J., Parolai, S., Ge, M. R., Jin, M. P., Walter, T. R. and Zschau, J., 2013, The 2011 M-w 9.0 Tohoku Earthquake: comparison of GPS and Strong-Motion Data. Bull. Seismol. Soc. Am., 103, 1336–1347. doi: 10.1785/0120110264.
Wang, J., Xu, C., Freymueller, J. T., Li, Z., and Shen, W., 2014, Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 Mw 7.9 Wenchuan earthquake, J. Geophys. Res. Solid Earth, 119, 3371–3392, doi:10.1002/ 2012JB009860.
Xu, C., Liu, Y., Wen, Y. M. and Wang, R., 2010, Coseismic slip distribution of the 2008 mW 7.9 Wenchuan earthquake from joint inversion of GPS and InSAR Data. Bull. Seis. Soc. Am., 100, 2736–2749, doi: 10.1785/0120090253.
Yang, J. G., Weng, S. Y. and Zhao, H., 2001, Applied Textbook of Artificial Neural Network, Zhejiang University Press, Hangzhou.
Zebker, H. A. and Villasenor, J., 1992, Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950– 959.
Zell, A., Mamier, G., Vogt, M., Mache, N., Hubner, R., Doring, S., Herrmann, K.U., Soyez, T., Schmalzl, M. and Sommer, T., 1995, SNNS, Stuttgart Neural Network Simulator, User Manual, Version 4.1. Stuttgart: Institute for Parallel and Distributed High Performance Systems, University of Stuttgart.