بررسی اثر تصحیح جوی تفریق شیء تیره (DOS) بر نقشه شاخص‌های آبی- گیاهی (مطالعه موردی: زمین‌های مرطوب جنوب دریاچه ارومیه)

نوع مقاله : پژوهشی

نویسنده

استادیار، گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه ارومیه، ارومیه، ایران

چکیده

در مقاله حاضر به‌بررسی و مقایسه نتایج حاصل از استخراج پهنه­های مرطوب و آبی جنوب دریاچه ارومیه با استفاده از تصاویر خام و تصحیح جوی شده ماهواره سنتینل 2 پرداخته شده است. بدین‌منظور تصویر ماهواره­ سنتینل 2 مربوط به بهار سال 2019 دریافت شد. با توجه به اینکه هدف مقایسه اثر تصحیحات جوی روی تصاویر است، تصویر مورد نظر با استفاده از روش تفریق شیء تیره در قالب نرم‌افزار QGIS تصحیح شد. سپس به‌منظور استخراج پهنه­های مرطوب و آبی از دو تصویر خام و تصحیح‌شده، چهار شاخص NDWI2، MNDWI، NDTI و شاخص SAVI با استفاده از نرم‌افزار SNAP تهیه و مورد مقایسه قرار گرفت و هشت نقشه مختلف تهیه شد. این چهار شاخص به‌منظور استخراج پهنه‌های مرطوب، آبی و پوشش گیاهی طراحی و توسعه پیدا کرده‌اند. به‌منظور مقایسه دقت خروجی­ها نیز از ضرایب کاپا و دقت تولیدکننده و دقت کاربر استفاده شد. نتایج نشان می­دهد که در بین این چهار شاخص، شاخص­های MNDWI و NDTI، با ضرایب کاپای بالا بهترین عملکرد را دارند. همچنین شاخص NDWI2 با ضریب کاپای 79/0 برای تصویر خام و 83/0 برای تصویر تصحیح‌شده کمترین دقت را دارد. همچنین مساحت پهنه­های مرطوب و آبی استخراج شده از چهار شاخص با مقادیر واقعی مقایسه شد. مساحت­های مستخرج از تصاویر خام و تصحیح‌شده و مقایسه آن با مساحت واقعی پهنه­های مرطوب نشان می­دهد که تصاویر تصحیح‌شده از دقت بالایی برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Effect of Atmospheric Correction (DOS) On Water-Vegetations Indexes Mapping (Case Study: South Wetlands of Lake Urmia)

نویسنده [English]

  • Vahid Mohammadnejad Arooq
Assistant Professor, Department of Geography, Faculty of Human and Literature, Urmia University, Urmia, Iran
چکیده [English]

Wetlands comprise roughly 6–9 percent of the Earth’s surface. The role of wetlands in maintaining environmental quality includes the storage of global terrestrial carbon. In addition, they influence many aspects of ecology, economy and human welfare. Furthermore, wetlands act as an oasis in an urban area which is important in the reduction of surrounding surface air temperature. Changes in the spatial distribution of wetlands (croplands, forests, water bodies and rivers), either by natural factors or anthropogenic activities could significantly affect the ecosystem. Satellite imagery enables us to monitor short-and long-term changes in wetlands and its vegetation density. Due to the fact that the electromagnetic waves reaching the satellites pass through the Earth's atmosphere, the reflections recorded by the sensor of these satellites do not really reflect the phenomena of the Earth's surface. By applying some corrections on the images, it is possible to convert them to Top Of Atmosphere reflectance values (TOA) and the Earth's surface reflections (BOA) ones. In this paper, we have reviewed and compared the results of extraction of wetlands and water body using raw and atmospheric corrected images of Sentinel 2 in south of Lake Urmia.
The study area includes wetland and agricultural lands of southern Urmia Lake. Due to the existence of two large Zarrineh and Simineh rivers in the region as well as its very fertile soil, agriculture has expanded rapidly. The main data of this study is satellite images of Sentinel 2 (spring 2019). The dark object subtraction (DOS) is one of the methods of atmospheric correction of satellite images, which with a partial fraction of the dark object's reflection of the whole image, it makes an atmospheric correction of the satellite image. In this paper, this method has been used for atmospheric correction. In fact, a copy of the raw satellite image of the study area was made and the atmospheric corrections were applied. Then the results were compared with the raw images. In order to compare two raw and corrected images, it was attempted to separate the wetlands (rivers, ponds, wetlands) from non-moisturizing lands, so that the effect of atmospheric correction on the ground reflection could be observed. For this purpose, NDWI2 MNDWI, NDTI and SAVI indexes have been used in this paper.
To compare the effect of atmospheric correction on Sentinel satellite images, the image of the study area was first provided and entered into the QGIS software for atmospheric correction. Then, using a combination of short infrared, near-infrared and green bands, the extraction and classification of wetlands, water bodies and vegetation cover density was made by SNAP software. Due to the lack of ground control points, the images were sampled by the ArcMap software and verified by using google earth images. Three precision coefficients were used to check and compare the accuracy of raw data with the atmospheric corrected data. In order to compare the accuracy of the outputs, Kappa coefficients, users’ accuracy and producers’ accuracy were calculated using the ArcMap software. The MNDWI and NDTI indices are the best indicators for raw images and for corrected images, to extract wetlands and water bodies. Kappa values of these indicators are above 0.9 and also users’ accuracy and producers’ accuracy are above 96%. Among the four above-mentioned indicators, the NDWI2 index has the lowest accuracy as well as the minimum Kappa coefficient. The results show that corrected images have high accuracy in extracting and displaying wetlands and water bodies. The area of the wetlands and water bodies to be redirected from corrected images is closer to actual areas. The actual area in the SAVI index is 25.15 square kilometers and the redistributed area of raw and corrected images are 25.71 and 25.38 km2, respectively. The actual area in the NDWI2 index is 180 km2, with a corrected area of 178.93 square kilometers. For other indicators, NDTI and MNDWI, the actual areas are 10.37 and 29.5 km2, respectively. In general, it can be concluded that atmospheric corrected images using the DOS method show better results in showing wetlands and water bodies areas.
The results of this paper show that the application of atmospheric corrections to the Sentinel 2 images can increase the accuracy of the extraction of wetlands and water bodies areas and even other landcovers. Considering the four indicators and extracting the zones from raw and atmospheric corrected images, it was determined that, firstly, MNDWI and NDTI indices are the best indicators for extracting wetlands and water bodies in the south of Lake Urmia. Secondly, among these two indicators, the data from the corrected atmospheric images have high precision coefficients than raw images. Therefore, it can be said that in estimating the wetlands and water bodies using Sentinel images 2, these images must be corrected using different methods to minimize their error of representations.

کلیدواژه‌ها [English]

  • Satellite image
  • Atmospheric correction
  • Dark object subtraction
  • Sentinel 2
  • Lake Urmia
بحرینی، ف.، پناهی، ف.، جعفری، م. و ملکیان، آ.، 1397، شناسایی مناطق آسیب پذیر پوشش گیاهی به خشکسالی با استفاده از سنجش از دور مطالعه موردی: استان بوشهری، مرتع و آبخیزداری، 2، 341-354
پورخسروانی، م.، مهرابی، ع. و موسوی، س.ح.، 1397، تحلیل فضایی خشکسالی حوضه سیرجان با استفاده از سنجش از دور، م. مهندسی اکوسیستم بیابان، 20، 13-22
مافی غلامی، د. و وارد، ر.، 1397، ارزیابی احتمال وقوع مخاطرات چندگانه محیطی در زیستگاه‌های مانگرو با استفاده از سنجش از دور و سامانة اطلاعات جغرافیایی، محیط شناسی، 3، 425-443
میرزایی، ف.، کشاورز، م. ر. و وظیفه دوست، م.، 1397، توسعه الگوریتم SM-SEBAL، به‌منظور محاسبه تبخیر و تعرق واقعی به‌کمک سنجش از دور، م. مهندسی منابع آب، 38، 107-127
ولیزاده کامران، خ. و لنگ باف، مریم.، 1397، برآورد تبخیر-تعرق واقعی ذرت با استفاده از پردازش تصاویر ماهواره ای و مدل سبال در منطقه خوزستان، 65، 1-13.
Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mohammad Javad Mirzadeh, S., White, L., Banks, S., Montgomery, J. and Hopkinson, C., 2019, Canadian wetland inventory using google earth engine: The first map and preliminary results. Remote Sensing, 11(7), p.842.
Barducci, A. and Guzzi, D., Marcoionni, P. and Pippi, I., 2009, Aerospace wetland monitoring by hyperspectral imaging sensors: a case study in the coastal zone of San Rossore Natural Park. Journal of Environmental Management 90(7), 2278-2286.
Cazals, C., Rapinel, S., Frison, P.L., Bonis, A., Mercier, G., Mallet, C., Corgne, S. and Rudant, J.P., 2016, Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images. Remote Sensing, 8(7), p.570.
Chun-ye, W. and Wei-ping, Z., 2011, Analysis of the impact of urban wetland on urban temperature based on remote sensing technology. Procedia Environmental Sciences, 10, 1546-1552.
Fei, S. X., Shan, C. H. and Hua, G. Z., 2011, Remote sensing of mangrove wetlands identification. Procedia Environmental Sciences, 10, 2287-2293.
Gao, B. C., Montes, M. J., Li, R. R., Dierssen, H. M. and Davis, C. O., 2007, An atmospheric correction algorithm for remote sensing of bright coastal waters using MODIS land and ocean channels in the solar spectral region. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1835-1843.
Hadjimitsis, D. G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M. G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L. and Clayton, C. R. I., 2010, Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Natural Hazards and Earth System Sciences, 10(1), 89-95.
Jiang, D., Huang, Y., Zhuang, D., Zhu, Y., Xu, X. and Ren, H., 2012, A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery. PloS one, 7, e45889.
Kaplan, G., Avdan, U., 2017, Mapping and monitoring wetlands using Sentinel-2 satellite imagery, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W4, 2017 4th International GeoAdvances Workshop, 14–15 October 2017, Safranbolu, Karabuk, Turkey.
Kelmas, V., 2011, Remote sensing of wetlands: case studies comparing practical techniques, Journal of Coastal Research 273, 418-427.
Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A. and Lafaye, M., 2007, Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106(1), 66-74.
Lira, J., 2006, Segmentation and morphology of open water bodies from multispectral images. International Journal of Remote Sensing, 27, 4015-4038.
Ludwig, C., Walli, A., Schleicher, C., Weichselbaum, J. and Riffler, M., 2019, A highly automated algorithm for wetland detection using multi-temporal optical satellite data. Remote Sensing of Environment, 224, 333-351.
Ma, M., Wang, X., Veroustraete, F. and Dong, L., 2007, Change in area of Ebinur lake during the 1998-2005 period. International Journal of Remote Sensing 2824, 5523-5533.
Martinez, J. M. and le Toan, T., 2007, Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sens. Environ. 108, 209–223.
McFeeters, S., 2013, Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544-3561.
Muro, J., Canty, M., Conradsen, K., Hüttich, C., Nielsen, A., Skriver, H., Remy, F., Strauch, A., Thonfeld, F. and Menz, G., 2016, Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series. Remote Sens. 8, 795.
Mwita, E., Menz, G., Misana, S. and Nienkemper, P., 2012, Detection of small wetlands with multi sensor data in East Africa. Advances in Remote Sensing, 1, 64-73
Nguyen, H. C., Jung, J., Lee, J., Choi, S., Hong, S. and Heo, J., 2015, Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor, Sensors, 15, 18865-18886.
Norjamäki, I. and Tokola, T., 2007, Comparison of atmospheric correction methods in mapping timber volume with multitemporal Landsat images in Kainuu, Finland. Photogrammetric Engineering and Remote Sensing, 73(2), 155-163.
Roy, D. P., Qin, Y., Kovalskyy, V., Vermote, E. F., Ju, J., Egorov, A., Hansen, M. C., Kommareddy, I. and Yan, L., 2014, Conteminous United States Demonstration and Characterization of MODIS-based Landsat ETM+ Atmospheric Correction Remote Sensinos of Environment, 140, 433-449.
Sun, R. and Chen, L., 2012, How can urban water bodies be designed for climatic adaptation? Landscape and Urban Planning 105, 27-33.
Wang, X., Zhang, F. and Johnson, V.C., 2018, New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China. Remote sensing of environment, 218, 104-118.
Wang, Y. and Yésou, H., 2018, Remote sensing of flood path Lakes and Wetlands: A challenging frontier in the monitoring of changing environments. 12, 1-12
Xu, H., 2006, Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing, 27(14), 3025-3033.
Xue, K., Ma, R., Wang, D. and Shen, M., 2019, Optical Classification of the Remote Sensing Reflectance and Its Application in Deriving the Specific Phytoplankton Absorption in Optically Complex Lakes. Remote Sensing, 11, 184-198.
Yeo, I.Y., Lang, M.W., Lee, S., McCarty, G.W., Sadeghi, A.M., Yetemen, O. and Huang, C., 2019, Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A geospatial modeling approach-Part 1. Science of The Total Environment, 653, pp.1546-1556.
Zedler, J. B. and Kercher, S., 2005, Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30, 39-74.
Zhang, Y., Lu, D., Yang, B., Sun, C. and Sun, M., 2011, Coastal wetland vegetation classification with a Landsat Thematic Mapper image. International Journal of Remote Sensing, 32, 545-561.