Ahmed, N.K., Atiya, A.F. El Gayar, N. and El-Shishiny, H., 2010, An empirical comparison of machine learning models for time series forecasting, Econometric Reviews, 29 (5-6), 594-621.
Alizadeh, M.R. and Nikoo, M.R., 2018, A fusion-based methodology for meteorological drought estimation using remote sensing data. Remote Sensing of Environment, 211, 229-247.
Bai, J., Cui, Q., Chen, D., Yu, H., Mao, X., Meng, L. and Cai, Y., 2018, Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an Agricultural Drought Index in China. Remote Sensing, 10(8), 1302.
Barua, S., Ng, A.W.M. and Perera, B.J.C., 2012, Artificial neural network–based drought forecasting using a nonlinear aggregated drought index. Journal of Hydrologic Engineering, 17(12), 1408-1413.
Belayneh, A., Adamowski, J., Khalil, B. and Ozga-Zielinski, B., 2014, Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. Journal of Hydrology, 508, 418-429.
Belayneh, A. and Adamowski, J., 2013, Drought forecasting using new machine learning methods/Prognozowanie suszy z wykorzystaniem automatycznych samouczących się metod. Journal of Water and Land Development, 18(9), 3-12.
Benesty, J., Chen, J., Huang, Y. and Cohen, I., 2009, Pearson correlation coefficient. In Noise Reduction in Speech Processing, 1-4, Springer.
Breiman, L., 2001, Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., 2017, Classification and Regression Trees: Routledge.
Chang, C.-C. and Lin, C.J., 2001, LIBSVM: a library for support vector machines ACM Trans. Intell Syst Technol, 2(3).
Cimen, M., 2008, Estimation of daily suspended sediments using support vector machines. Hydrological Sciences Journal, 53(3), 656-666.
Cortes, C. and Vapnik, V., 1995, Support-vector networks. Machine Learning, 20(3), 273-297.
Daubechies, I., 1992, Ten Lectures on Wavelets. Vol. 61: Siam.
Duan, Z. and Bastiaanssen, W.G.M., 2013, First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sensing of Environment, 131, 1-13.
Heumann, B.W., 2011, Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography, 35(1), 87-108.
Kerr, Y.H., Waldteufel, P., Wigneron, J.-P., Delwart, S. Cabot, F. Boutin, J. Escorihuela, M.-J., Font, J., Reul, N. and Gruhier, C., 2010, The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proceedings of the IEEE, 98(5), 666-687.
Kim, T.-W. and Valdés, J.B., 2003, Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, 8(6), 319-328.
Kogan, F.N., 1995, Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655-668.
Kogan, F.N., 2000, Contribution of remote sensing to drought early warning. Early Warning Systems for Drought Preparedness and Drought Management, 75-87.
Modarres, R., 2006, Regional precipitation climates of Iran. Journal of Hydrology (New Zealand), 13-27.
Mokhtari Dehkordi, R. and Akhoondzadeh, M., 2020, Combining Neural Network and Wavelet Transform to Predict Drought in Iran Using MODIS and TRMM Satellite Data. Journal of Geospatial Information Technology, 7(4), 175-191.
Nason, G.P. and von Sachs, R., 1999, Wavelets in time-series analysis. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1760), 2511-2526.
Park, S., Im, J., Park, S. and Rhee, J., 2017, Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula. Agricultural and Forest Meteorology, 237, 257-269.
Ramoelo, A., Majozi, N., Mathieu, R., Jovanovic, N., Nickless, A. and Dzikiti, S., 2014, Validation of global evapotranspiration product (MOD16) using flux tower data in the African savanna, South Africa. Remote Sensing, 6(8), 7406-7423.
Sánchez, N., González-Zamora, Á., Piles, M. and Martínez-Fernández, J., 2016, A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: a case of study over the Iberian Peninsula. Remote Sensing, 8(4), 287.
Szalai, S. and Szinell, C.S., 2000, Comparison of two drought indices for drought monitoring in Hungary—a case study. In Drought and Drought Mitigation in Europe, 161-166, Springer.
Wilhite, D.A. and Buchanan-Smith, M., 2005, Drought as hazard: understanding the natural and social context. Drought and Water Crises: Science, Technology, and Management Issues, 3-29.
Zhang, A. and Jia, G., 2013, Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134, 12-23.
Zhang, H., Chen, L., Qu, Y., Zhao, G. and Guo, Z., 2014, Support vector regression based on grid-search method for short-term wind power forecasting. Journal of Applied Mathematics.