Afsari, N., Sodoudi, F., Taghizadeh Farahmand, F. and Ghassemi, M. R., 2011, Crustal structure of Northwest Zagros (Kermanshah) and Central Iran (Yazd and Isfahan) using teleseismic Ps converted phases. Journal of Seismology, 15(2), 341–353.
Al-Damegh, K., Sandvol, E. and Barazangi, M., 2005, Crustal structure of the Arabian plate: New constraints from the analysis of teleseismic receiver functions. Earth Planet. Sci. Lett., 231, 177-196.
Al-Hashmi, S., Gök, R., Al-Toubi, K., Al-Shijbi, Y., El-Hussain, I. and Rodgers, A. J., 2011, Seismic velocity structure at the southeastern margin of the Arabian Peninsula. Geophysical Journal International, 186(2), 782–792.
Almadani, S. A., 2011, Reciever function studies of crustal structure, composition, and evolution beneath the Afar Depression, Ethiopia, Doctoral Dissertations, 2248, Missouri University of Science and Technology.
Amante, C. and Eakins, B. W., 2009, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA.
Asgharzadeh, M. F., Von Frese, R. R. B., Kim, H. R., Leftwich, T. E. and Kim, J. W., 2007, Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophysical Journal International, 169(1), 1–11.
Barthelmes, F. and Kohler, W., 2012, International Centre for Global Earth Models (ICGEM). Journal of Geodesy, 86(10), 932–934.
Bird, P., 2003, An updated digital model of plate boundaries. Geochemistry, Geophysics and Geosystem, 4(3), 1027.
Bott, M.H.P., 1960, The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys. J. Int., 3(1), 63-67.
Dehghani, G. A. and Makris, J., 1984, The gravity field and crustal structure of Iran, N. Jb.Geol. Palaeont. Abh., 168, 215-229.
Dugda, M. T., Nyblade, A. A., Julia, J., Langston, C. A., Ammon, C. J. and Simiyu, S., 2005, Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa. Journal of Geophysical Research, 110, B01303.
Ebadi, S., Barzaghi, I., Safari, A. and Bahroudi, A., 2019, Evaluation of different gravimetric methods to Moho recovery in Iran. Annals of Geophysics, 62.
Globig, J., Fernàndez, M., Torne, M., Vergés, J., Robert, A. and Faccenna, C., 2016, New insights into the crust and lithospheric mantle structure of Africa from elevation, geoid, and thermal analysis, Journal of Geophysical Research: Solid Earth, 121, 5389–5424.
Hammond, J. O. S., Kendall, J.-M., Stuart, G.W., Keir, D., Ebinger, C., Ayele, A. and Belachew, M., 2011, The nature of the crust beneath the afar triple junction: evidence from receiver functions. Geochemistry, Geophysics, Geosystems, 12, Q12004.
Hansen, S. E., Rodgers, A. J., Schwartz, S. Y. and Al-Amri, A. M. S., 2007, Imaging ruptured lithosphere beneath the Red Sea and Arabian Peninsula. Earth and Planetary Science Letters, 259(3-4), 256–265.
Heck, B. and Seitz, K., 2007, A comparison of the tesseroid, prism and pointmass approaches for mass reductions in gravity field modelling. Journal of Geodesy, 81(2), 121–136.
Heydarizadeh Shali, H., Sampietro, D., Safari, A., Capponi, M. and Bahroudi, A., 2020, Fast collocation for Moho estimation from GOCE gravity data: the Iran case study. Geophysical Journal International, 221(1), 651-664.
Karabulut, H., Paul, A., Ergun, T. A., Hatzfeld, D., Childs, D. M. and Aktar, M., 2013, Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia. Geophysical Journal International, 194(1).
Karabulut, H., Paul, A., Değer Özbakır, A., Ergün, T. and Şentürk, S., 2019, A new crustal model of the Anatolia-Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International.
Kim, J. H., 2009, Estimating classification error rate: repeated crossvalidation, repeated hold-out and bootstrap. Computational Statics & Data Analysis, 53(11), 3735–3745.
Laske, G., Masters, G., Ma, Z. and Pasyanos, M., 2013, Update on CRUST1. 0—A 1-degree global model of Earth’s crust. In Geophys. Res. Abstr, Vol. 15, p. 2658.
Li, X., Bock, G., Vafidis, A., Kind, R., Harjes, H.-P., Hanka, W., Wylegalla, K., Van der Meijde, M. and Yuan, X., 2003, Receiver function study of the Hellenic subduction zone: imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere. Geophysical Journal International, 155(2), 733–748.
Li, X. and Gotze, H., 2001, Ellipsoid, geoid, gravity, geodesy, and geophysics, Geophysics, 66(6), 1660–1668.
Mechie, J., Ben-Avraham, Z., Weber, M. H., Götze, H.-J., Koulakov, I., Mohsen, A. and Stiller, M., 2013, The distribution of Moho depths beneath the Arabian plate and margins. Tectonophysics, 609, 234–249.
Mohammadi, N., Sodoudi, F., Mohammadi, E. and Sadidkhouy, A., 2013, New constraints on lithospheric thickness of the Iranian plateau using converted waves. Journal of Seismology, 17(3), 883–895. https://doi.org/10.1007/s10950-013-9359-2.
Motaghi, K., Tatar, M. and Priestley, K., 2012, Crustal thickness variation across the northeast Iran continental collision zone from teleseismic converted waves, Journal of Seismology, 16, 253-260.
Motavalli-Anbaran, S.-H., Zeyen, H., Brunet, M.-F. and Ardestani, V. E., 2011, Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling. Tectonics, 30(5).
Motavalli‐Anbaran, S.-H., Zeyen, H. and Ardestani, V. E., 2013, 3D joint inversion modeling of the lithospheric density structure based on gravity, geoid and topography data — Application to the Alborz Mountains (Iran) and South Caspian Basin region. Tectonophysics, 586, 192-205.
Nasrabadi, A., Sepahvand, M. R. and Dadjo, Z., 2019, Moho depth variations and Vp/Vs ratios in the seismotectonic zones of Central Iran, Eastern Iran, and Makran: using a modified Zhu and Kanamori method. Journal of Seismology.
Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M. and Pequegnat, C., 2010, Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). In: Leturmy, P., Robin, C. (Eds.), Tectonic and stratigraphic evolution of Zagros and Makran during the Mesozoic–Cenozoic. Geol. Soc. London, Special Publications, 330, pp. 5–18. https://doi.org/10.1144/SP330.2.
Radjaee, A. H., Rham, D., Mokhtari, M., Tatar, M., Priestley, K. and Hatzfeld, D., 2010, Variation of Moho depth in the Central part of Alborz Mountains, North of Iran. Geophysical Journal International, 181, 173–184.
Salem, A., Green, C., Campbell, S., Fairhead, J. D., Cascone, L. and Moorhead, L., 2013, Moho depth and sediment thickness estimation beneath the Red Sea derived from satellite and terrestrial gravity data. Geophysics, 78(5), G89–G101. https://doi.org/10.1190/geo2012-0150.1.
Sampietro, D., Mansi, A. and Capponi, M., 2018, Moho Depth and Crustal Architecture beneath the Levant Basin from Global Gravity Field Model. Geosciences, 8(6), 200. https://doi.org/10.3390/geosciences8060200.
Sanders, P., Priestly, K. and Taymaz, T., 1998, Variation in the crustal structure beneath western Turkey. Geophysical Journal International, 134, 373–389.
Seber, D., Sandvol, E., Sandvol, C., Brindisi, C. and Barazangi, M., 2001, Crustal model for the Middle East and North Africa region: Implications for the isostatic compensation mechanism, Geophysical Journal International, 147, 630–638.
Shad Manaman, N., Shomali, H. and Hemin, K., 2011, New constraints on upper-mantle S-velocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion. Geophysical Journal International, 184, 247–267.
Silva, J., Santos, D. and Gomes, K., 2014, Fast gravity inversion of basement relief. Geophysics, 79(5), G79-G91.
Sodoudi, F., Yuan, X., Kind, R., Heit, B. and Sadidkhouy, A., 2009, Evidence for a missing crustal root and a thin lithosphere beneath the Central Alborz by receiver function studies. Geophysical Journal International, 177(2), 733–742.
Tatar, M. and Nasrabadi, A., 2013, Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion. Journal of Seismology, 17, 1321–1337.
Tezel, T., Shibutani, T. and Kaypak, B., 2013, Crustal thickness of Turkey determined by receiver function. Journal of Asian Earth Sciences, 75, 36-45.
Tiberi, C., Ebinger, C., Ballu, V., Stuart, G. and Oluma, B., 2005, Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone. Geophysical Journal International, 163(2), 775–787.
Tiberi, C., Leroy, S., d'Acremont, E., Bellahsen, N., Ebinger, C., Al-Lazki, A. and Pointu, A., 2007, Crustal geometry of the northeastern Gulf of Aden passivemargin: localization of the deformation inferred from receiver function analysis. Geophysical Journal International, 168, 1247–1260.
Uieda, L. and Barbosa, C.F.V., 2016, A gravity-derived Moho model for South America: source code, data, and model results from ‘Fast non-linear gravity inversion in spherical coordinates with application to the South American Moho’.
Uieda, L., Barbosa, V. and Braitenberg, C., 2016, Tesseroids: forwardmodeling gravitational fields in spherical coordinates. Geophysics, 81, F41–F48.
Zhu, L., Mitchell, B. J., Akyol, N., Cemen, I. and Kekovali, K., 2006, Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research, 111, B01301.