پیش‌بینی آنومالی سطح دریا با استفاده از روش تجزیه به توابع حالت‌های ذاتی و شبکه عصبی تابع ‌پایه ‌شعاعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، دانشکده مهندسی نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار، دانشکده مهندسی نقشه‌برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

آنومالی سطح دریا (SLA، Sea Level Anomaly) به‌عنوان کمیتی که بیان‌کننده اختلاف ارتفاع سطح ‌لحظه‌ای آب با مقدار متوسط سطح‌ آب در یک بازه زمانی می‌باشد در مطالعه وضعیت سطح آب مناطق مختلف دارای اهمیت چشم‌گیری می‌باشد. منطقه آبی دریاچه خزر به‌عنوان یکی از دو منبع مهم آبی برای کشور ایران از اهمیتی استراتژیک برخوردار است. بدین‌منظور در این پژوهش با استفاده از داده‌های گذر 92 مأموریت‌های ارتفاع‌سنجی‌ماهواره‌ای (توپکس‌پوزیدون، جیسون1، جیسون2 و جیسون3)؛ عبوری از منطقه آبی خزر به مشاهده تغییرات کمیت آنومالی سطح دریا در این منطقه از سال 1993 تا سال 2020 پرداخته شده است. سپس این کمیت با استفاده از روش تجزیه به حالت‌های‌ ذاتی (EMD، Emperical Mode Decompsition) به‌عنوان روشی کارا در جداسازی فرکانس‌های تشکیل‌دهنده یک سیگنال مورد آنالیز قرار گرفته‌است و سپس با استفاده از شبکه عصبی توابع پایه شعاعی (RBF، Radial Basis Function) یک شبکه به‌منظور پیش‌بینی آنومالی سطح دریا ایجاد شده است. 9 فرکانس غالب به‌همراه یک ترند نتیجه تجزیه سیگنال مدنظر در این پژوهش می‌باشد که در نهایت منجر به پارامترهای؛ مجذور میانگین خطا به میزان 029/0 متر و 034/0 متر به‌همراه ضریب‌همبستگی 99/0 و 97/0 به‌ترتیب در دو مرحله آموزش و تست شبکه عصبی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sea level anomaly prediction using Empirical Mode Decomposition and Radial Basis Function Neural Networks

نویسندگان [English]

  • Hamed kia 1
  • Behzad Voosoghi 2
1 M.Sc. Graduated, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran
2 Associate Professor, Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran
چکیده [English]

Sea level anomaly as a parameter that expresses the difference between the instantaneous water level height and the average amount of water level in a period of time is of great importance in studying the water level situation in different regions. Predicting a time series requires that the series be static and that seasonal trends and changes be removed from the observations to eliminate the dependence of variance and mean on time. For this purpose, the use of various methods to static a time series has been suggested and used. Using the method of decomposition into the intrinsic modes of a signal that underlies the formation of intrinsic mode functions that include parts of the signal with approximately the same frequency; in order to analyze and isolate the trend and seasonal changes of the signal have been considered. Caspian sea as the largest lake in the world or the so-called largest enclosed water area in the world is located in northern Iran. This important water area has become one of the main sources of income for its peripheral countries. It has important oil and gas resources as well as the main source of sturgeon as one of the most expensive food sources in the world. This strategic region is known as a medium for connecting the East and the West of the world. In addition to the economic and commercial dimension, the Caspian Sea is of great importance from the military point of view, as numerous military maneuvers are held every year by the neighboring countries. For the above reasons; awareness of the water level and its changes has become increasingly important, especially over the past few decades, but despite this importance, not many studies have been conducted to study the water level. Therefore, in this research, using satellite altimeter data, the monitoring of water level changes in this area has been done. In this study a coverage of the sea anomaly parameter and its changes from 1993 to the present has been provided. The Caspian Sea water region as one of the two important water sources for Iran, is strategically important.For this purpose, in this study, using the transit data of 92 satellite altimetric missions passing through the Caspian Sea region, the changes in the sea level anomaly in this region since 1993 have been observed. This quantity is then analyzed using the method of analysis of intrinsic modes as an efficient method in separating the frequencies that make up a signal and then, using a neural network, a network of radial base functions has been created in order to predict sea level anomaly. 9 dominant frequencies along with a trend are the result of signal analysis considered in this study. Finally, it leads to the parameters of the mean square error of 0.029 m and 0.034 m with a correlation coefficient of 0.99 and 0.97, respectively, in the two stages of neural network training and testing.

کلیدواژه‌ها [English]

  • Satellite Altimetry
  • Signal Analysis
  • Empirical Mode Decomposition Method
  • Intrinsic Mode Function
  • Radial Basis Function Neural Network
Ali Ghorbani, M., Khatibi, R., Aytek, A., Makarynskyy, O. and Shiri, J. 2010, Sea water level forecasting using genetic programming and comparing the performance with Artificial Neural Networks. Computers & Geosciences, 36, 620-627.
Andersen, O. B. and Scharroo, R., 2011, Range and Geophysical Corrections in Coastal Regions: And Implications for Mean Sea Surface Determination. In: Vignudelli, S., Kostianoy, A. G., Cipollini, P. & Benveniste, J. (eds.) Coastal Altimetry. Berlin, Heidelberg: Springer Berlin Heidelberg.
Bonaduce, A., Pinardi, N., Oddo, P., Spada, G. and Larnicol, G., 2016, Sea-level variability in the Mediterranean Sea from altimetry and tide gauges. Climate Dynamics, 47, 2851-2866.
Cazenave, A. and Cozannet, G. L., 2014, Sea level rise and its coastal impacts. Earth's Future, 2, 15-34.
Curch, J. A. and White, N. J., 2006, A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33.
DU, K. L. and Swamy, M. N. S., 2006, Radial Basis Function Networks. In: DU, K. L. & Swamy, M. N. S. (eds.) Neural Networks in a Softcomputing Framework. London: Springer London.
Handoko, E. Y., Fernandes, M. J. and Lázaro, C., 2017, Assessment of Altimetric Range and Geophysical Corrections and Mean Sea Surface Models—Impacts on Sea Level Variability around the Indonesian Seas. Remote Sensing, 9.
Holgate, S. J., 2007, On the decadal rates of sea level change during the twentieth century. Geophysical Research Letters, 34.
Huang, N. E., Shen, Z., Long, S. R., WU, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C. and LiuU, H. H., 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 903-995.
Imani, M., You, R. J. and Kuo, C. Y., 2014, Caspian Sea level prediction using satellite altimetry by artificial neural networks. International Journal of Environmental Science and Technology, 11, 1035-1042.
Leuliette, E. W., Nerem, R. S. and Mitchum, G. T., 2004, Calibration of TOPEX/Poseidon and Jason Altimeter Data to Construct a Continuous Record of Mean Sea Level Change. Marine Geodesy, 27, 79-94.
Rahmstorf, S., 2007, A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science, 315, 368.
Röske, F., 1997, Sea level forecasts using neural networks. Deutsche Hydrographische Zeitschrift, 49, 71-99.
Slangen, A. B. A., Katsman, C. A., Van de wal, R. S. W., Vermeersen, L. L. A. and Riva, R. E. M., 2012, Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Climate Dynamics, 38, 1191-1209.
Stammer D, C. A., 2018, Satellite Altimetry Over Oceans And Land Surfaces.
Sun, W. and Wang, Q., 2012, Sea level anomaly forecasting based on combined model of least square and arma. Journal of Geodesy and Geodynamics, 32, 91-94.
Vaziri, M., 1997, Predicting Caspian Sea Surface Water Level by ANN and ARIMA Models. Journal of Waterway, Port, Coastal, and Ocean Engineering, 123, 158-162.
Wild, M., Calanca, P., Scherrer, S. C. and Ohmura, A., 2003, Effects of polar ice sheets on global sea level in high-resolution greenhouse scenarios. Journal of Geophysical Research: Atmospheres, 108.
Xiao-Fen, D., 2014, Methodology and Case Study of Sea Level Prediction Based on Secular Tide Gauge Data. 2014.
Zhao, J., Fan, Y. and Mu, Y. 2019, Sea Level Prediction in the Yellow Sea From Satellite Altimetry With a Combined Least Squares-Neural Network Approach. Marine Geodesy, 42, 344-366.