مدل‌سازی و پیش‌بینی سری زمانی محتوای الکترون کلی یونوسفر با استفاده از روش‌ ماشین بردار پشتیبان در سال‌های 2007 الی 2018

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، گروه مهندسی نقشه‌برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک، اراک، ایران

چکیده

یونوسفر یکی از لایه‌های جو زمین است که به‌علت خاصیت الکتریکی، ممکن است اثرات مخرب و زیان‌باری را روی امواج الکترومغناطیسی عبوری از آن را داشته باشد. جهت بررسی این اثرات، مقدار محتوای الکترونی کلی (TEC) یونوسفر مورد مطالعه و بررسی قرار می‌گیرد. در این مقاله سری زمانی یونوسفر با استفاده از سه مدل شبکه‌های عصبی مصنوعی (ANNs)، سیستم استنتاج عصبی-فازی سازگار (ANFIS) و ماشین بردار پشتیبان (SVM) مدل‌سازی شده و سپس پیش‌بینی می‌شود. جهت انجام این تحقیق از مشاهدات ایستگاه GNSS تهران (N69/35، E33/51) که یکی از ایستگاه‌های شبکه جهانی IGS است، در سال‌های 2007 الی 2018 استفاده شده است. پارامترهای سال (year)، روز از سال (DOY)، ساعت (time)، شاخص فعالیت‌های خورشیدی (F10.7) و شاخص‌های فعالیت‌های ژئومغناطیسی (Kp and DST) به‌عنوان ورودی هر سه مدل در نظر گرفته شده و خروجی، مقدار TEC خواهد بود. برای مرحله آزمون دقت هر سه مدل، مشاهدات دو سال 2014 و 2018 از مرحله آموزش کنار گذاشته شده‌اند. دلیل انتخاب این دو سال، بررسی دقت مدل‌ها در زمان فعالیت‌های شدید خورشیدی (2014) و فعالیت‌های آرام خورشیدی (2018) است. نتایج حاصل از هر سه مدل با TEC حاصل از مدل مرجع بین‌المللی یونوسفر 2016 (IRI2016) و همچنین خروجی‌های شبکه جهانی IGS مقایسه شده است. همچنین از شاخص‌های آماری ضریب همبستگی، خطای نسبی و جذر خطای مربعی میانگین (RMSE) جهت بررسی دقت و صحت سه مدل استفاده شد. کمینه RMSE محاسبه شده برای مدل SVM، 11/3 TECU به‌دست آمده که در مقایسه با سایر مدل‌ها، از دقت بالاتری در مدل‌سازی و پیش‌بینی سری زمانی TEC یونوسفر در دوره فعالیت‌های آرام و شدید خورشیدی برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and prediction of the ionospheric total electron content time series using support vector machine in 2007-2018

نویسندگان [English]

  • Seyed Reza Ghaffari Razin
  • Navid Hooshangi
Assistant Professor, Department of Geomatics, Faculty of Geoscience Engineering, Arak University of Technology, Arak, Iran
چکیده [English]

The ionosphere is a layer of the Earth's atmosphere that extends from an altitude of 60 km to an altitude of 1,500 km. Knowledge of electron density distribution in the ionosphere is very important and necessary for scientific studies and practical applications. Observations of global navigation satellite system (GNSS) such as the global positioning system (GPS) are recognized as an effective and valuable tool for studying the properties of the ionosphere. Studies on ionosphere modeling in the Iranian region have shown that the global ionosphere maps (GIM) model as well as empirical models such as IRI2016 and NeQuick have low accuracy in this region. The main reason for the low accuracy of these models is the lack of sufficient observations in the Iranian region. For this reason, this paper presents the idea of using learning-based methods to generate a local ionosphere model using observations of GNSS stations. Therefore, the main purpose of this paper is to use three models of artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM) to model and predict the time series of ionospheric TEC variations in Tehran GNSS station.
An adaptive neuro-fuzzy inference system (ANFIS) is a kind of ANN that is based on Takagi–Sugeno fuzzy inference system. The technique was developed in the early 1990s (Jang, 1993). Since it integrates both neural networks and fuzzy logic principles, it has potential to capture the benefits of both in a single framework. Its inference system corresponds to a set of fuzzy IF–THEN rules that have learning capability to approximate nonlinear functions. Hence, ANFIS is considered to be a universal estimator. ANFIS architecture consists of five layers: fuzzy layer, product layer, normalized layer, defuzzy layer, and total output layer.
In machine learning, support-vector machines (SVM) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. More formally, a SVM constructs a hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which can be used for classification, regression, or other tasks like outliers detection (Vapnik, 1995). In SVM method, using nonlinear functions φ(x), the input vector (x) is depicted from N-dimensional space to M-dimensional space (M>N). The number of hidden units (M) is equal to the number of support vectors that are the learning data points, closest to the separating hyperplane.
The results of this paper show that the SVM has a very high accuracy and capability in modeling and predicting the ionosphere TEC time series. This model has a higher accuracy in the period of severe solar activity than GIM and IRI2016 models, which are the traditional ionospheric models in the world. Due to the fact that global models in the region of Iran do not have acceptable accuracy due to lack of sufficient observations, therefore, the SVM can be used as a local ionosphere model with high accuracy. Using this model, the TEC value can be predicted with high accuracy for different times and during periods of severe solar activity. This model can be used in studies related to the physics of the ionosphere as well as its temporal variations.

کلیدواژه‌ها [English]

  • Ionosphere
  • TEC
  • GPS
  • Neural Network
  • ANFIS
  • SVM
Abdi, N., Azmoodeh Ardalan, A. R. and Karimi, R., 2016, Evaluation of Iran Ionosphere Model Based on GPS Data Processing, JGST, 5 (4), 37-47.
Abdi, N., Azmoudeh Ardalan, A. R. and Karimi, R., 2018, Combination of GPS and Satellite Altimetry Observations for Local Ionosphere Modeling Over Iran, JGST, 7(3), 109-125.
Akhoondzadeh, M., 2014, Investigation of GPS-TEC measurements using ANN method indicating seismo-273 ionospheric anomalies around the time of the Chile (Mw = 8.2) earthquake of 01 April 2014, Advance in space research, 54(9), 1768-1772.
Amerian, Y., Mashhadi Hossainali, M., Voosoghi, B. and Ghaffari Razin, M. R., 2010, Tomographic reconstruction of the ionospheric electron density in term of wavelets, Journal of Aerospace Science and Technology, 7(1), 19–29.
Amerian, Y., Voosoghi, B. and Mashhadi Hossainali, M., 2013, Regional Ionosphere Modeling in Support of IRI and Wavelet Using GPS Observations, Acta Geophysica, 61(5), 1246-1261, DOI: 10.2478/s11600-013-0121-5.
Bilitza, D. and Reinisch, B. W., 2008, International Reference Ionosphere 2007: Improvements and new parameters, Advances in Space Research, 2018, 42 (2008), 599–609.
Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A. and Radicella, S. M., 2007, Calibration errors on experimental slant total electron content (TEC) determined with GPS, J Geod., 2007, 81(2), 111–120. doi: 10.1007/s00190-006-0093-1.
Etemadfard, H. and Hossainali, M. M., 2016, Application of Slepian Theory for Improving the Accuracy of Global Ionosphere Models in the Arctic Region, J. Geophys. Res. Space Physics, 121(3), 2583-2594.
Feizi, R., Voosoghi, B. and Ghaffari Razin, M. R., 2020, Regional modeling of the ionosphere using adaptive neuro-fuzzy inference system in Iran. Advances in Space Research 65(2020), 2515–2528.
Ghaffari Razin, M. R. and Voosoghi, B., 2017, Wavelet neural networks using particle swarm optimization training in modeling regional ionospheric total electron content, Journal of Atmospheric and Solar–Terrestrial Physics, http://dx.doi.org/10.1016/j.jastp.2016.09.005, 149 (2017), 21–30.
Ghaffari Razin, M. R. and Moradi, A. R., 2020, Temporal extrapolation of TEC using WNN during 2007–2018 and comparison against GIM, IRI2016 and Kriging, Advances in Space Research, https://doi.org/10.1016/j.asr.2020.11.033.
Haykin, S., 1994, Neural Networks, a comprehensive Foundation, Macmillan College Publishing Company, New York, 1994.
Jang, J.-S. R, 1993, ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665–685.
Kleusberg, A. and Teunissen, P. J. G., 1998, GPS for geodesy, Springer, 1998.
Liu, Z. and Gao, Y., 2003, Ionospheric TEC predictions over a local area GPS reference network, GPS Solutions, 8(1), 23–29.
Leandro, R. F. and Santos, M. C., 2007, A neural network approach for regional vertical total electron content modeling, Stud. Geophys. Geod, 51(2), 279-292.
Mars, P., Chen, J. R. and Nambiar, R., 1996, Learning Algorithms: Theory and Applications in Signal Processing, Control and Communications”, CRC Press, Boca Raton, Florida, 1996.
Nava, B., Coisson, P. and Radicella, S. M., 2008, A new version of the NeQuick ionosphere electron density model, Journal of Atmospheric and Solar-Terrestrial, 2008, Physics, doi:10.1016/j.jastp.2008.01.015.
Sabzehee, F., Farzaneh, S., Sharifi, M. A. and Akhoondzadeh, M., 2018, TEC Regional Modeling and prediction using ANN method and single frequency receiver over IRAN, ANNALS OF GEOPHYSICS, 61(1).
Schaer, S., 1999, Mapping and Predicting the Earths Ionosphere Using the Global Positioning System, PhD dissertation, Astronomical Institute, University of Berne, Switzerland, 205.
Seeber, G., 2003, Satellite Geodesy, Foundations, Methods and Application”, Walter de Gruyter, Berlin and New York, 531.
Sharifi, M. A. and Farzaneh, S., 2015, Regional TEC dynamic modeling based on Slepian functions, Advances in Space Research, 56 (5), 907-915.
Simpson, P. K., 1990, Artificial neural systems: foundations, paradigms, applications, and implementations, Pergamon Press, New York, 1990.
Takagi, T. and Sugeno, M., 1985, Fuzzy identification of systems and its applications to modeling and control, IEEE Transactions on Systems, Man and Cybernetics, 15(1), 116-132.
Tebabal, A., Radicella, S. M., Damtie, B., Migoya-Orue, B., Nigussie, M. and Nava, B., 2019, Feed forward neural network based ionospheric model for the East African region, Journal of Atmospheric and Solar–Terrestrial Physics, 2019, 191(105052).
Vapnik, V., 1995, Nature of statistical learning theory”, Springer, New York.
Yeganeh, B., Motlagh, MSP, Rashidi, Y., Kamalan, H., 2012, Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model, Atmos Environ, 55:357–365.
Yilmaz, A., Akdogan, K. E. and Gurun, M., 2009, Regional TEC mapping using neural networks, Radio Sci, 2009, 44 (3), 1-16, doi:10.1029/2008RS004049.
Zhang, Z., Pan, S., Gao, C., Zhao, T. and Gao, W., 2019, Support Vector Machine for Regional Ionospheric Delay Modeling, Sensors, 2019, 19, 2947; doi:10.3390/s19132947.