Aires, F., Prigent, C., & Rossow, W.B. (2004). Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res, 109, 1-18, DOI: 10.1029/2003JD003527.
Alfieri, S.M., Lorenzi, F.D., & Meneti, M. (2013). Mapping air temperature using time series analysis of LST: the SINTESI approach. Nonlinear Process Geophys, 20, 513–527, DOI: 10.5194/npg-20-513.
Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N., & Santos, A. (2012). Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ, 124, 108–121, DOI: 10.1016/j.rse.2012.04.024.
Bhattacharya, B.K., Dadhwal, V.K., & Sorokovikov, V.A. (2005). Land surface temperature retrieval and its validation using NOAA AVHRR thermal data. J. Indian Soc. Remote, 33, 321-338.
Barbosa, S., & Scotto, M.G. (2022). Extreme heat events in the Iberia Peninsula from extreme value mixture modeling of ERA5-Land air temperature. Weather and Climate Extremes, 36, 1-11.
Chudinova, S.M., Frauenfeld, O.W., Barry, R.G., & Zhang, T. (2006). Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. J. Geophys. Res., 111, 1-15, DOI: 10.1029/2005JF000342.
Coll, C., Wan, Z., & Galve, J.M. (2009). Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J. Geophys. Res., 114, 1-15, DOI: 10.1029/2009JD012038.
Colombi, A., Michele, C.D., Pepe, M., & Rampini, A. (2007). Estimation of daily mean air temperature from MODIS LST in Alpine areas. EARSeLe Proceedings, 6(1), 38-46.
Diaz, R.C. (2013). Evaluation of MODIS Land products for air temperature estimations in Colombia. Agron. Colomb, 31(2), 223-233.
Duan, S.B., Li, Z.L., Tanga, B.H., Wu, H., & Tang, R. (2014). Generation of a time-consistent land surface temperature product from MODIS data. Remote Sens. Enviro., 140, 339–349, DOI: http://dx.doi.org/10.1016/j.rse.2013.09.003.
Faysash, D., Eric, A., & Smith, A. (1999). Simultaneous Land Surface Temperature–Emissivity Retrieval in the Infrared Split Window. J. Atmos. Oceanic Technol., 16, 1674-1689.
Galve, J.M., Coll, C., Caselles, E.V., Niclos, R., Sanchez, J.M., & Mira, M. (2007). Simulation and validation of land surface temperature algorithms for MODIS and AATSR data, Tethys, 4, 27–32, DOI: 10.3369/tethys.2007.4.04.
Ignatov, A., & Gutman, G., 1998, Diurnal cycles of land surface temperatures. Adv. Space Res., 22(5), 641-644.
Jiménez, C., Prigent, C., Catherinot, J., Rossow, W., Liang, P., & Moncet, J.L. (2012). A comparison of ISCCP land surface temperature with other satellite and in situ observations. J. Geophys. Res., 117, 1-8, DOI: 10.1029/2011JD017058.
Jin, M., & Dickinson, R.E. (1999). Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 1. Without clouds. J. Geophys. Res., 104, 2105-2116.
Kloog I., Nordio, F., Lepeule, J., Padoan, A., Lee, M., Auffrayg, A., & Schwartzb, J. (2017). Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data. Int. J. Climatol., 37, 296–304. DOI: 10.1002/joc.4705.
Lei, Z., Yaoming, M.A., Zhongbo, S.U., & Salama, M.S. (2010). Estimation of Land Surface Temperature over the Tibetan Plateau Using AVHRR and MODIS Data. Adv. Atmos. Sci., 27(5), 1110–1118, DOI: 10.1007/s00376-009-9133-0.
Lipton, A.E. (1992). Effect of slope and aspect variations on satellite surface temperature retrievals and mesoscale analysis in mountainous terrain. J. Appl. Meteorol., 31(3), 255-264.
Liu, Y., Ortega-Farías, S., Tian, F., Wang, S., & Li, S. (2021). Estimation of Surface and Near-Surface Air Temperatures in Arid Northwest China Using Landsat Satellite Images. Front. Environ. Sci., 9, 1-17.
Mackiewicz, M.C. (2012). A new approach to quantifying soil temperature responses to changing air temperature and snow cover. Polar Sci., 6, 226-236, DOI: http://dx.doi.org/10.1016/j.polar.2012.06.003.
Mendelson, R., Kurukulasuriya, P., Basist, A., Kogan, F., & Williams, C. (2007). Climate analysis with satellite versus weather station data. Clim. Change, 81, 71–83, DOI: 10.1007/s10584-006-9139-x.
Mostovoy, G.V., Roger, L.K., Reddy, K.R.V., Kakani, G., & Filippova, M.G. (2006). Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GIsci Remote Sens., 43, 78-110, DOI: http://dx.doi.org/10.2747/1548-1603.43.1.78.
Nascimento, A., Galvani, E., Gobo, J., & Wollmann, C. (2022). Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo. Brazil, Atmosphere, 13, 1-21.
Peng, X., Wu, W., Zheng, Y., Sun, J., Hu, T., & Wang, P. (2020). Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Sci. Rep., 10, 1-16.
Quan, J., Chen, Y., Zhan, W., Wang, J., Voogt, J., & Li, J. (2014). A hybrid method combining neighborhood information from satellite data with modeled diurnal temperature cycles over consecutive days. Remote Sens. Environ., 155, 257–274, DOI: http://dx.doi.org/10.1016/j.rse.2014.08.034.
Smerdon, J.E., Pollack, H.N., Cermak, V., Enz, J.W., & Kresl, M. (2006). Daily, Seasonal, and annual relationships between air and subsurface temperatures. J. Geophys. Res., 111, 1-12, DOI: 10.1029/2004JD005578.
Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.Z. (1997). Requirements for satellite land surface temperature validation using a Silt Playa. Remote Sens. Environ., 6(2), 279–289.
Wan, Z. (1999). MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), University of California, Santa Barbara.
Wan, Z., & Li, Z.L. (2008). Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens, 29(17), 5373–5395, DOI: http://dx.doi.org/10.1080/01431160802036565.
Wan, Z., Zhang, Y., Zhang, Q., & Li, Z.L. (2002). Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 83, 163–180.
Wan, Z. (2007). Collection-5 MODIS land surface temperature products users’ guide. ICESS, University of California, Santa Barbara.
Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., Zhou, X., & Haginoya, S. (2005). Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res., 110, 1-13, DOI: 10.1029/2004JD005566.
Xu, Y., Shen, Y., & Wu, Z. (2013). Spatial and temporal variations of land surface temperature over the Tibetan plateau based on harmonic analysis. Mt. Res. Dev., 33(1), 85–94, DOI: http://dx.doi.org/10.1659/MRD-JOURNAL-D-12-00090.1.
Yang, C., Yan, F., & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. J. Environ. Manage., 265, 1-14.
Yu, Y., Duan, S.B., Li, Z.L., Chang, S., Xing, Z., Leng, P., & Gao, M. (2021). Interannual Spatiotemporal Variations of Land Surface Temperature in China From 2003 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 1783-1795. doi: 10.1109/JSTARS.2020.3048823
Zeng, L., Brian, D.W., Tadesse, T., Shan, J., Hayes, M.J., Li, D., & Xiang, D. (2015). Estimation of daily air temperature based on MODIS land surface temperature products over the Corn Belt in the US. Remote Sens, 7, 951-970, DOI: 10.3390/rs70100951.
Zhan, M., Xia, L., Zhan, L., & Wang, Y. (2019). Recognition of Changes in Air and Soil Temperatures at a Station Typical of China’s Subtropical Monsoon Region (1961–2018). Adv. Meteorol, 2019, 1-10.
Zhu, X., Zhang, Q., Xu, C.Y., Sun, P., & Hu, P. (2019). Reconstruction of high spatial resolution surface air temperature data across China: A new geo-intelligent multisource data-based machine learning technique. Science of the Total Environment, 665, 300-313.