The Comparison of MODIS Land Surface Temperature with Meteorological Stations Measurements in Iran

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj, Iran. E-mail: moradimasood@ymail.com

2 Corresponding Author, Department of Physical Geography, Faculty of Social Science, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: bromand416@yahoo.com

چکیده

Land surface temperature (LST) plays a key role in the transfer of heat to the atmosphere and to the subsurface layers of soil. This study aims at examining the determination coefficient of MODIS LST on air temperature and soil temperature at different depths of Iran. A new method was employed to create a time consistent LST from Terra and Aqua MODIS products, to eliminate the observation differences in local solar time. Preceding the production of time consistent MODIS LST for 12:30 PM, a comparison was carried out with temperature measurements of meteorological stations. The correlation of MODIS LST and Meteorological Station Measurement (hereafter MSM) demonstrate high values, especially for air temperature and 5cm-deep subsurface soil temperature (R2>0.95). The lowest value was obtained for 100cm-deep soil temperature (R2=0.83). The results of intra annual analysis revealed significant relationship between MODIS LST and MSM temperatures. In the comparison of MODIS LST with subsurface soil temperatures, the scatter plot changes from 1:1 to fusiform due to the delay in heat transfer from surface to the subsurface of soil layers. This result postulates that MODIS LST is consonant with MSM temperatures in arid and semiarid regions of Iran. Spatial variation of correlation is higher for 100cm-deep soil temperature (16%). On the contrary, for air temperature and 5cm-deep soil temperature showing the highest correlation, the spatial variation is negligible throughout Iran (6.2%). However, Root Mean Square Error (RMSE) analysis revealed LST differences from 2.43 to 24.88 ˚C throughout Iran rather than MSM temperatures.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Comparison of MODIS Land Surface Temperature with Meteorological Stations Measurements in Iran

نویسندگان [English]

  • Masoud Moradi 1
  • Bromand Salahi 2
1 Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj, Iran. E-mail: moradimasood@ymail.com
2 Corresponding Author, Department of Physical Geography, Faculty of Social Science, University of Mohaghegh Ardabili, Ardabil, Iran. E-mail: bromand416@yahoo.com
چکیده [English]

Land surface temperature (LST) plays a key role in the transfer of heat to the atmosphere and to the subsurface layers of soil. This study aims at examining the determination coefficient of MODIS LST on air temperature and soil temperature at different depths of Iran. A new method was employed to create a time consistent LST from Terra and Aqua MODIS products, to eliminate the observation differences in local solar time. Preceding the production of time consistent MODIS LST for 12:30 PM, a comparison was carried out with temperature measurements of meteorological stations. The correlation of MODIS LST and Meteorological Station Measurement (hereafter MSM) demonstrate high values, especially for air temperature and 5cm-deep subsurface soil temperature (R2>0.95). The lowest value was obtained for 100cm-deep soil temperature (R2=0.83). The results of intra annual analysis revealed significant relationship between MODIS LST and MSM temperatures. In the comparison of MODIS LST with subsurface soil temperatures, the scatter plot changes from 1:1 to fusiform due to the delay in heat transfer from surface to the subsurface of soil layers. This result postulates that MODIS LST is consonant with MSM temperatures in arid and semiarid regions of Iran. Spatial variation of correlation is higher for 100cm-deep soil temperature (16%). On the contrary, for air temperature and 5cm-deep soil temperature showing the highest correlation, the spatial variation is negligible throughout Iran (6.2%). However, Root Mean Square Error (RMSE) analysis revealed LST differences from 2.43 to 24.88 ˚C throughout Iran rather than MSM temperatures.

کلیدواژه‌ها [English]

  • Land Surface Temperature
  • MODIS
  • Time Consistent
  • Heat Transfer
Aires, F., Prigent, C., & Rossow, W.B. (2004). Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions. J. Geophys. Res, 109, 1-18, DOI: 10.1029/2003JD003527.
Alfieri, S.M., Lorenzi, F.D., & Meneti, M. (2013). Mapping air temperature using time series analysis of LST: the SINTESI approach. Nonlinear Process Geophys, 20, 513–527, DOI: 10.5194/npg-20-513.
Benali, A., Carvalho, A.C., Nunes, J.P., Carvalhais, N., & Santos, A. (2012). Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ, 124, 108–121, DOI: 10.1016/j.rse.2012.04.024.
Bhattacharya, B.K., Dadhwal, V.K., & Sorokovikov, V.A. (2005). Land surface temperature retrieval and its validation using NOAA AVHRR thermal data. J. Indian Soc. Remote, 33, 321-338.
Barbosa, S., & Scotto, M.G. (2022). Extreme heat events in the Iberia Peninsula from extreme value mixture modeling of ERA5-Land air temperature. Weather and Climate Extremes, 36, 1-11.
Chudinova, S.M., Frauenfeld, O.W., Barry, R.G., & Zhang, T. (2006). Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. J. Geophys. Res., 111, 1-15, DOI: 10.1029/2005JF000342.
Coll, C., Wan, Z., & Galve, J.M. (2009). Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J. Geophys. Res., 114, 1-15, DOI: 10.1029/2009JD012038. 
Colombi, A., Michele, C.D., Pepe, M., & Rampini, A. (2007). Estimation of daily mean air temperature from MODIS LST in Alpine areas. EARSeLe Proceedings, 6(1), 38-46.
Diaz, R.C. (2013). Evaluation of MODIS Land products for air temperature estimations in Colombia. Agron. Colomb, 31(2), 223-233.
Duan, S.B., Li, Z.L., Tanga, B.H., Wu, H., & Tang, R. (2014). Generation of a time-consistent land surface temperature product from MODIS data. Remote Sens. Enviro., 140, 339–349, DOI: http://dx.doi.org/10.1016/j.rse.2013.09.003.
Faysash, D., Eric, A., & Smith, A. (1999). Simultaneous Land Surface Temperature–Emissivity Retrieval in the Infrared Split Window. J. Atmos. Oceanic Technol., 16, 1674-1689.
Galve, J.M., Coll, C., Caselles, E.V., Niclos, R., Sanchez, J.M., & Mira, M. (2007). Simulation and validation of land surface temperature algorithms for MODIS and AATSR data, Tethys, 4, 27–32, DOI: 10.3369/tethys.2007.4.04.
Ignatov, A., & Gutman, G., 1998, Diurnal cycles of land surface temperatures. Adv. Space Res., 22(5), 641-644.
Jiménez, C., Prigent, C., Catherinot, J., Rossow, W., Liang, P., & Moncet, J.L. (2012). A comparison of ISCCP land surface temperature with other satellite and in situ observations. J. Geophys. Res., 117, 1-8, DOI: 10.1029/2011JD017058.
Jin, M., & Dickinson, R.E. (1999). Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 1. Without clouds. J. Geophys. Res., 104, 2105-2116.
Kloog I., Nordio, F., Lepeule, J., Padoan, A., Lee, M., Auffrayg, A., & Schwartzb, J. (2017). Modelling spatio-temporally resolved air temperature across the complex geo-climate area of France using satellite-derived land surface temperature data. Int. J. Climatol., 37, 296–304. DOI: 10.1002/joc.4705.
Lei, Z., Yaoming, M.A., Zhongbo, S.U., & Salama, M.S. (2010). Estimation of Land Surface Temperature over the Tibetan Plateau Using AVHRR and MODIS Data. Adv. Atmos. Sci., 27(5), 1110–1118, DOI: 10.1007/s00376-009-9133-0.
Lipton, A.E. (1992). Effect of slope and aspect variations on satellite surface temperature retrievals and mesoscale analysis in mountainous terrain. J. Appl. Meteorol., 31(3), 255-264.
Liu, Y., Ortega-Farías, S., Tian, F., Wang, S., & Li, S. (2021). Estimation of Surface and Near-Surface Air Temperatures in Arid Northwest China Using Landsat Satellite Images. Front. Environ. Sci., 9, 1-17.
Mackiewicz, M.C. (2012). A new approach to quantifying soil temperature responses to changing air temperature and snow cover. Polar Sci., 6, 226-236, DOI: http://dx.doi.org/10.1016/j.polar.2012.06.003.
Mendelson, R., Kurukulasuriya, P., Basist, A., Kogan, F., & Williams, C. (2007). Climate analysis with satellite versus weather station data. Clim. Change, 81, 71–83, DOI: 10.1007/s10584-006-9139-x.
Mostovoy, G.V., Roger, L.K., Reddy, K.R.V., Kakani, G., & Filippova, M.G. (2006). Statistical estimation of daily maximum and minimum air temperatures from MODIS LST data over the state of Mississippi. GIsci Remote Sens., 43, 78-110, DOI: http://dx.doi.org/10.2747/1548-1603.43.1.78.
Nascimento, A., Galvani, E., Gobo, J., & Wollmann, C. (2022). Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo. Brazil, Atmosphere, 13, 1-21.
Peng, X., Wu, W., Zheng, Y., Sun, J., Hu, T., & Wang, P. (2020). Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Sci. Rep., 10, 1-16.
Quan, J., Chen, Y., Zhan, W., Wang, J., Voogt, J., & Li, J. (2014). A hybrid method combining neighborhood information from satellite data with modeled diurnal temperature cycles over consecutive days. Remote Sens. Environ., 155, 257–274, DOI: http://dx.doi.org/10.1016/j.rse.2014.08.034.
Smerdon, J.E., Pollack, H.N., Cermak, V., Enz, J.W., & Kresl, M. (2006). Daily, Seasonal, and annual relationships between air and subsurface temperatures. J. Geophys. Res., 111, 1-12, DOI: 10.1029/2004JD005578.
Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.Z. (1997). Requirements for satellite land surface temperature validation using a Silt Playa. Remote Sens. Environ., 6(2), 279–289.
Wan, Z. (1999). MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (LST ATBD), University of California, Santa Barbara.
Wan, Z., & Li, Z.L. (2008). Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens, 29(17), 5373–5395, DOI: http://dx.doi.org/10.1080/01431160802036565.
Wan, Z., Zhang, Y., Zhang, Q., & Li, Z.L. (2002). Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 83, 163–180.
Wan, Z. (2007). Collection-5 MODIS land surface temperature products users’ guide. ICESS, University of California, Santa Barbara.
Wang, K., Wan, Z., Wang, P., Sparrow, M., Liu, J., Zhou, X., & Haginoya, S. (2005). Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res., 110, 1-13, DOI: 10.1029/2004JD005566.
Xu, Y., Shen, Y., & Wu, Z. (2013). Spatial and temporal variations of land surface temperature over the Tibetan plateau based on harmonic analysis. Mt. Res. Dev., 33(1), 85–94, DOI: http://dx.doi.org/10.1659/MRD-JOURNAL-D-12-00090.1.
Yang, C., Yan, F., & Zhang, S. (2020). Comparison of land surface and air temperatures for quantifying summer and winter urban heat island in a snow climate city. J. Environ. Manage., 265, 1-14.
Yu, Y., Duan, S.B., Li, Z.L., Chang, S., Xing, Z., Leng, P., & Gao, M. (2021). Interannual Spatiotemporal Variations of Land Surface Temperature in China From 2003 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 1783-1795. doi: 10.1109/JSTARS.2020.3048823
Zeng, L., Brian, D.W., Tadesse, T., Shan, J., Hayes, M.J., Li, D., & Xiang, D. (2015). Estimation of daily air temperature based on MODIS land surface temperature products over the Corn Belt in the US. Remote Sens, 7, 951-970, DOI: 10.3390/rs70100951.
Zhan, M., Xia, L., Zhan, L., & Wang, Y. (2019). Recognition of Changes in Air and Soil Temperatures at a Station Typical of China’s Subtropical Monsoon Region (1961–2018). Adv. Meteorol, 2019, 1-10.
Zhu, X., Zhang, Q., Xu, C.Y., Sun, P., & Hu, P. (2019). Reconstruction of high spatial resolution surface air temperature data across China: A new geo-intelligent multisource data-based machine learning technique. Science of the Total Environment, 665, 300-313.