Effect of Nonextensive Perturbation on Ion Acoustic Solitons

نوع مقاله : مقاله پژوهشی

نویسنده

1. Corresponding Author, Department of Physics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran. E-mail: pakzad@bojnourdiau.ac.ir

چکیده

The behavior of ion acoustic wave (IAW) is studied in an electron-ion plasma consisting of cold ions and nonextensive electrons. In this study, the reductive perturbation method is used and the new point is the non-uniformity of the nonextensive parameter in the media. We want to achieve more realistic results of ion acoustic wave behavior by better using the reductive method. In fact, the variation in the behavior of ion acoustic wave when it encounters the nonextensity perturbation region is examined. Perturbation area is a part of plasma where the nonextensivity changes slightly. Therefore, the presence of nonextensivity is introduced as the first order perturbation and the phase velocity is applied as a fixed parameter in the calculations. The modified KdV (mKdV) equation is derived to describe the behavior of the ion acoustic wave propagation in this model. The obtained equation clarifies the change of the soliton profile when moving in all through the perturbation area. Our numerical results show that part of ion acoustic waves propagates as oscillatory shock wave in the perturbed area. The results of this investigation can be helpful for understanding the behavior of ion acoustic waves in an astrophysical environment and space plasmas with varying nonextensivity (Qiu et al., 2020; Silva et al., 1998; Lima et al., 2000).

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Nonextensive Perturbation on Ion Acoustic Solitons

نویسنده [English]

  • Hamid Reza Pakzad
1. Corresponding Author, Department of Physics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran. E-mail: pakzad@bojnourdiau.ac.ir
چکیده [English]

The behavior of ion acoustic wave (IAW) is studied in an electron-ion plasma consisting of cold ions and nonextensive electrons. In this study, the reductive perturbation method is used and the new point is the non-uniformity of the nonextensive parameter in the media. We want to achieve more realistic results of ion acoustic wave behavior by better using the reductive method. In fact, the variation in the behavior of ion acoustic wave when it encounters the nonextensity perturbation region is examined. Perturbation area is a part of plasma where the nonextensivity changes slightly. Therefore, the presence of nonextensivity is introduced as the first order perturbation and the phase velocity is applied as a fixed parameter in the calculations. The modified KdV (mKdV) equation is derived to describe the behavior of the ion acoustic wave propagation in this model. The obtained equation clarifies the change of the soliton profile when moving in all through the perturbation area. Our numerical results show that part of ion acoustic waves propagates as oscillatory shock wave in the perturbed area. The results of this investigation can be helpful for understanding the behavior of ion acoustic waves in an astrophysical environment and space plasmas with varying nonextensivity (Qiu et al., 2020; Silva et al., 1998; Lima et al., 2000).

کلیدواژه‌ها [English]

  • Ion acoustic
  • Soliton
  • Shock
  • Modified KdV equation
  • Perturbation
  • Nonextensivity
Asano, N. (1974). Wave Propagations in Non-Uniform Media. Supplement of the Progress of Theoretical Physics, 55, 52-79.
Bacha, M., Boukhalfa, S., & Tribech, M. (2012). Ion-acoustic rogue waves in a plasma with a q-nonextensive electron velocity distribution. Astrophys. Space Sci., 341, 591–595.
Barkan, A., D'Angelo, N., & Merlino, R.L. (1996). Experiments on ion-acoustic waves in dusty plasmas, Planetary and Space Science, 44(3), 239-242.
Chaudhuri, S., Roy, K., Chowdhury, K., & Chowdhury, A.R. (2019). Solitary wave and modulational instability in a strongly coupled semiclassical relativistic dusty pair plasma with density gradient. Pramana J. Phys., 92(6), 94.
Cousens, S.E., Sultana, S., Kourakis, I., Yaroshenko, V.V., Verheest, F., & Hellberg, M. A. )2012(, Nonlinear dust-acoustic solitary waves in strongly coupled dusty plasmas. Phys. Rev. E., 86(6), 066404.
Dubinov, A.E., Kitayev, I.N., & Kolotkov, D.Y. (2021). The separation of ions and fluxes in nonlinear ion-acoustic waves. Phys. Plasmas, 28(8), 083702.
Dubinov, A. Kolotkov, E., & Yu., D. (2012). Ion-Acoustic Super Solitary Waves in Dusty Multi species Plasmas, IEEE Trans. Plasma Sci., 40(5), 1429-1433.
Gell, Y., & Gomberoff, L. (1977). Ion acoustic solitons in the presence of density gradients. Phys. Lett., 60(2), 125-126.
Goswami, B.N. and Sinha, M., 1976, Ion acoustic solitary wave in an inhomogeneous uniform temperature. Pramana J. Phys., 7, 141-145.
Goswami, J., Chandra, S., Sarkar, J., & Ghosh, B. (2020). Electron acoustic solitary structures and shocks in dense inner magnetosphere finite temperature plasma, Radiat. Eff. Defects Solids, 175, 961-973.
Hafez, M.G. (2019). Nonlinear Schamel Korteweg-De Vries–Burgers Equation to Report Ion-Acoustic Waves in the Relativistic Plasmas, IEEE Trans. Plasma Sci., 47(12), 5314-5323.
Havnes, O., Aslaksen, T., & Brattli, A. (2001). Charged Dust in the Earth's Middle Atmosphere, Phys. Scr., T89, 133-137.
Ikezi, H., Tailor, R.J., & Baker, D.R. (1970). Formation and Interaction of Ion-Acoustic Solitions, Phys. Rev. Lett., 25(1), 11.
John, P.I., & Saxena, Y.C. (1976). Propagation of ion acoustic solitons in plasma density gradients, Phys. Lett., 56A, 385-386.
Kaniadakis, G., Lavagno, A., & Quarati, P. (1996). Generalized statistics and solar neutrinos. Phys. Lett., B 369, 308-312.
Kourakis, I., & Shukla, P.K. (2003). Ion-acoustic waves in a two-electron-temperature plasma: Oblique modulation and envelope excitations, J. Phys. A., Math. Gen., 36(47), 11901-11913.
Lavagno, A., Kaniadakis, G., Rego-Monteiro, M., Quarati, P., & Tsallis, C. (1998). Non-Extensive Thermostatistical Approach of the Peculiar Velocity Function of Galaxy Clusters. Astrophys. Lett. Commun., 35, 449-451.
Lee, N.C. (2009). Small amplitude electron-acoustic double layers and solitons in fully relativistic plasmas of two-temperature electrons, Phys. Plasmas, 16, 042316.
Lima, J.A.S., Silva, Jr. R., & Santos, J. (2000). Plasma oscillations and nonextensive statistics, Physical Rev. E., 61, 3260.
Liu, B., Goree, J., Flanagan, T.M., Sen, A., Tiwari, S.K., Ganguli, G., & Crabtree, C.H. (2018). Experimental observation of cnoidal wave form of nonlinear dust acoustic waves. Phys. Plasmas, 25(11), 113701.
Longren, K.E., 1983, Soliton experiments in plasmas, 25, 943-982.
Lu, F.F., & Liu, S.Q. (2021). Small amplitude ion-acoustic solitons with regularized κ-distributed electrons. AIP Advances, 11(8), 085223.
Maksimovic, M., Pierrard, V., & Riley, P. (1997). Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Letters., 24 (9), 1151-1154.
Nakamura, Y., Ito, T., & Koga, K. (1993). Excitation and reflection of ion-acoustic waves by a gridded plate and a metal disk. J. Plasma Phys., 49(2), 331-339.
Pakzad, H.R., & Tribeche, M. (2013). Nonlinear Propagation of Ion-Acoustic Shock waves in Dissipative Electron–Positron–Ion Plasmas with Superthermal Electrons and Relativistic Ions. J. Fusion Energy, 32(2), 171-176.
Plastino, A.R., & Plastino, A. (1993). Stellar polytropes and Tsallis' entropy. Phys. Lett. A., 174(5-6), 384-386.
Qiu, H., Zhou, Z., Peng, X., Zhang, X., Zhu, Y., Gao, Y., Xiao, D., Bao, H., Xu, T., Zhang, J., Huang, T., Zhou, J., Ming, Z., Xiang, P., Yang, H., Wang, X., Wu, D., & NCST Team (2020). Initial measurement of electron nonextensive parameter with electric probe. Physical Rev. E., 101(4), 043206.
Rao, N.N., & Varma, R.K. (1977). Korteweg - de Vries solitons with different co-ordinate stretchings. Pramana., 8, 427-432.
Rao, N.N., & Varma, R.K. (1979). Modified Korteweg-de Vries Equation for Spatially Inhomogeneous Plasmas. Physics Letters, 70A, 9-11.
Rehman, A.U., & Lee, J.K. (2018). Electron acoustic waves in a plasma with a q-nonextensive distribution of electrons. Phys. Plasmas, 25(2), 022107.
Roy, D., & Sahu, B. (2020). Influence of varying magnetic field on nonlinear wave excitations in collisional quantum plasmas. Zeitschriftfür Naturforschung A., 75(11), 913-919.
Schamel, H. (1973). A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons. Journal of Plasma Physics, 9(3), 377-387.
Schamel, H. (1980). Solitary plasma hole via ion‐vortex distribution. Phys. Fluids, 23(12), 2498-2499.
Shukla, P.K., & Mamun, A.A. (2002). Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002).
Silva, Jr. R., Plastino, A.R., & Lima, J.A.S. (1998). A Maxwellian path to the q-nonextensive velocity distribution function. Phys. Lett. A., 249(5-6), 401-408.
Singh, K., Kaur, N., Sethi, P., & Saini, N.S. (2018). Modified KdV equation for trapped ions in polarized dusty plasma. AIP Conference Proceedings, 1925, 020014.
Sultana, S. (2018). Ion acoustic solitons in magnetized collisional non-thermal dusty plasmas. Phys. Lett. A., 382(20), 1368-1373.
Talbot, L., Cheng, R.K., Schefer, R.W., & Willis, D.R. (1980). Thermophoresis of particles in a heated boundary layer, J. Fluid Mech., 101(4), 737.
Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys., 52, 479-487.
Torres, D.F., Vucetich, H., & Plastino, A. (1997). Early Universe Test of Nonextensive Statistics. Phys. Rev. Lett., 79(9), 1588.
Verheest, F., Hellberg, M.A., & Kourakis, I. (2013). Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions. Phys. Plasmas, 20(8), 082309.
Washimi, H., & Taniuti, T. (1966). Propagation of Ion-Acoustic Solitary Waves of Small Amplitude. Phys. Rev. Lett., 17(19), 996.