Abdu, M.A., Ramkumar, T.K., Batista, I.S., Brum, C.G.M., Takahashi, H., Reinisch, B.W., & Sobral, J. H.A. (2006). Planetary wave signatures in the equatorial atmosphere–ionosphere system, and mesosphere- E- and F-region coupling. J. Atmospheric and Solar-Terrestrial Physics, 68, 509–522. https://doi.org/10.1016/j.jastp.2005.03.019.
Cherkos, A. M., & Nigussie, M. (2022). A study of spatio-temporal variability of equatorial electrojet using long-term ground-observations. J. Adv. Space Res., 69(2), 869–888. https://doi.org/10.1016/j.asr.2021.10.014.
Anderson, D., Anghel, A., Yumoto, K., Ishitsuka, M., & Kudeki, E. (2002). Estimating daytime vertical ExB drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophysical Research Letters, 29(12), 37–1 -37-4.https://doi.org/10.1029/2001GL014562.
Anderson, D., Anghel, A., Chau, J., & Veliz, O. (2004). Daytime vertical ExB drift velocities inferred from ground-based magnetometer observations at low latitudes. J. Space Weather, 2(11), https://doi.org/10.1029/2004SW000095.
Anderson, D., Anghel, A., Chau, J., Yumoto, K., Bhattacharyya, A., & Alex, S. (2006). Daytime, low latitude, vertical ExB drift velocities, inferred from ground-based magnetometer observations in the Peruvian, Philippine and Indian longitude sectors under quiet and disturbed conditions; ILWS WORKSHOP 2006, GOA (2006).
Bagiya, M. S., Joshi, H. P., Iyer, K. N., Aggarwal, M., Ravindran, S., & Pathan, B. M. (2009). TEC variations during low solar activity period (2005--2007) near the equatorial ionospheric anomaly crest region in India. Annales Geophysicae, 27(3), 1047 – 1057. https://doi.org/10.5194/angeo-27-1047-2009, 2009.
Balan, N., Otsuka, Y., Nishioka, M., Liu, J. Y., & Bailey, G. J. (2013). Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Space Physics, 118(5), 2660–2669, doi:10.1002/jgra.50275.
Basavaiah, N. (2012). Geomagnetism: solid earth and upper atmosphere perspectives. Springer Science & Business Media.
Basu, S., Basu, S., Huba, J., Krall, J., McDonald, S. E., Makela, J. J., & Groves, K. (2009). Day-to-day variability of the equatorial ionization anomaly and scintillations at dusk observed by GUVI and modeling by SAMI3. J. Geophys. Res., 114, A04302, doi:10.1029/2008JA013899.
Briggs, B. H. (1984). The variability of ionospheric dynamo currents. J. Atmospheric and Terrestrial Physics, 46(5), 419–429, https://doi.org/10.1016/0021-9169(84)90086-2.
Bolaji, O., Owolabi, O., Falayi, E., Jimoh, E., Kotoye, A., Odeyemi, O., & Onanuga, K. (2017). Observations of equatorial ionization anomaly over Africa and Middle East during a year of deep minimum. Ann. Geophys., 35(1), 123–132. https://doi.org/10.5194/angeo-35-123-2017.
Chandrasekhar, N.P., Arora, K., & Nagarajan, N. (2014). Characterization of seasonal and longitudinal variability of EEJ in the Indian region. J. Geophys. Res. Space Phys., 119(12), 242– 259, https://doi.org/10.1002/2014JA020183.
Chapman, S. (1951). The equatorial electrojet as detected from the abnormal electric current distribution above huancayo, peru, and elsewhere, Archiv Fuer Meteorologie, Geophysik und Bioklimatologie, Serie A, 4, 368–390, https://doi.org/10.1007/BF02246814.
Chen, C. H., Liu, J. Y., Yumoto, K., Lin, C. H., & Fang, T. W. (2008). Equatorial ionization anomaly of the total electron content and equatorial electrojet of ground-based geomagnetic field strength. J. Atmospheric and Solar-Terrestrial Physics, 70(17), 2172–2183, https://doi.org/10.1016/j.jastp.2008.09.021.
Deshpande, M. R., Rastogi, R. G., Vats, H. O., Klobuchar, J. A., Sethia, G., Jain, A. R., Subbarao, B. S., Patwari, V. M., Janve, A. V., Rai, R. K., Singh, M., Gurm, H. S., & Murthy, H. S. (1977). Effect of electrojet on the total electron content of the ionosphere over the Indian subcontinent, Nature, 265(5612), 599-600, https://doi.org/10.1038/267599a0.
Dias, M. A. L., Fagundes, P. R., Venkatesh, K., Pillat, V. G., Ribeiro, B. A. G., Seemala, G. K., & Arcanjo, M. O. (2020). Daily and monthly variations of the equatorial ionization anomaly (EIA) over the Brazilian sector during the descending phase of the Solar Cycle 24. J. Geophysical Research: Space Physics, 125(9), https://doi.org/10.1029/2020JA027906.
Fambitakoye, O., & Mayaud, P. N. (1976a). Equatorial electrojet and regular daily variation sri. a determination of the equatorial electrojet parameters. J. Atmospheric and Terrestrial Physics, 38(1), 1–17, https://doi.org/10.1016/0021-9169(76)90188-4.
Fambitakoye, O., & Mayaud, P. N. (1976b). Equatorial electrojet and regular daily variation srii. the centre of the equatorial electrojet. J. Atmospheric and Terrestrial Physics, 38(1), 19–26, https://doi.org/10.1016/0021-9169(76)90189-6.
Fejer, B.G., Farley, D.T., Woodman, R.F., & Calderon, C. (1979). Dependence of equatorial F region vertical drifts on season and solar cycle. J. Geophysical Research: Space Physics, 84, 5792–5796, https://doi.org/10.1029/JA084iA10p05792
Fejer, B.G. (1997). The electrodynamics of the low-latitude ionosphere: Recent results and future challenges. J. Atmospheric and Solar-Terrestrial Physics, 59(13), 1456–1482, https://doi.org/10.1016/S1364-6826(96)00149-6.
Fejer, B.G., & Tracy, B., D. (2013). Lunar tidal effects in the electrodynamics of the low latitude ionosphere. J. Atmospheric and Solar-Terrestrial Physics, 103, 76–82, https://doi.org/10.1016/j.jastp.2013.01.008.
Ghosh, P., Otsuka, Y., Mani, S., & Shinagawa, H. (2020). Day-to-day variation of pre-reversal enhancement in the equatorial ionosphere based on GAIA model simulations. J. Earth, Planets and Space, 72(1), 1–8, https://doi.org/10.1186/s40623-020-01228-9.
Guizelli, L. M., Denardini, C. M., Moro, J., & Resende, L. C. A. (2013). Climatological study of the daytime occurrence of the 3-meter EEJ plasma irregularities over Jicamarca close to the solar minimum (2007 and 2008). J. Earth, Planets and Space, 65, 39- 44, https://doi.org/10.5047/eps.2012.05.008.
Gouin, P. (1962). Reversal of the magnetic daily variation at Addis Ababa. Nature, 193(4821), 1145–1146.https://doi.org/10.1038/1931145a0.
Hajra, R., Chakraborty, S. K., & Paul, A. (2009). Electrodynamical control of the ambient ionization near the equatorial anomaly crest in the Indian zone during counter electrojet days. J. Radio Sci., 44(3), 1-13.https://doi.org/10.1029/2008RS003904
Huang, Y. N., Cheng, K., & Chen, S. W. (1989). On the equatorial anomaly of the ionospheric total electron content near the northern anomaly crest region. J. Geophysical Research: Space Physics, 94(A10), 13515–13525, https://doi.org/10.1029/JA094iA10p13515
Huang, L., Huang, J., Wang, J., Jiang, Y., Deng, B., Zhao, K., & Lin, G. (2013). Guoguo: Analysis of the north--south asymmetry of the equatorial ionization anomaly around 110 E longitude. J. Atmospheric and Solar-Terrestrial Physics, 102, 354–361, https://doi.org/10.1016/j.jastp.2013.06.010.
Huang, L., Wang, J., Jiang, Y., Huang, J., Chen, Z., & Zhao, K. (2014). A preliminary study of the single crest phenomenon in total electron content (TEC) in the equatorial anomaly region around 120 E longitude between 1999 and 2012. J. Advances in Space Research, 54(11), 2200 – 2207, https://doi.org/10.1016/j.asr.2014.08.021.
Iyer, K. N., Deshpande, M. R., & Rastogi, R. G. (1976). The equatorial anomaly in ionospheric Total Electron Content and the Equatorial Electrojet current strength, Proc. Indian. Acad. Science, 84A, 129-138, https://doi.org/10.1007/BF03046803.
Jonah, O.F., de Paula, E.R., Muella, M.T.A.H., Dutra, S.L.G., Kherani, E.A., Negreti, P.M.S., & Otsuka, Y. (2015). TEC variation during high and low solar activities over South American sector. J. Atmos. Sol-Terr. Phys., 135, 22-35, https://doi.org/10.1016/j.jastp.2015.10.005.
Khadka, S. M., Valladares, C., Pradipta, R., Pacheco, E., & Condor, P. (2016). On the mutual relationship of the equatorial electrojet, TEC and scintillation in the Peruvian sector. Radio Sci., 51(6), 742–751.
Khadka, S. M., Valladares, C. E., Sheehan, R., & Gerrard, A. J. (2018). Effects of electric field and neutral wind on the asymmetry of equatorial ionization anomaly. J. Radio Science, 53(5), 683–697, https://doi.org/10.1029/2017RS00642.
Liu, J.Y., Chen, Y.I., Chuo, Y.J., & Tsai, H.F. (2001). Variations of ionospheric total electron content during the Chi-Chi earthquake. J. Geophysical Research Letters, 28, 1383-1386, https://doi.org/10.1029/2000GL012511.
Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann. Geophys., 21(10), 2083–2093, https://doi.org/10.5194/angeo-21-2083-2003.
Mo, X.H., Zhang, D.H., Liu, J., Hao, Y.Q., Ye, J.F., Qin, J.S., Wei, W. X., & Xiao, Z. (2018). Morphological characteristics of equatorial ionization anomaly crest over Nanning region. Radio Science, 53, 37–47, https://doi.org/10.1002/2017RS006386.
Mo, X., & Zhang, D. (2021). A comparative study of the northern and southern equatorial ionization anomaly crests in the East-Asian sector during 2006–2015. Advances in Space Research, 68(3), 1461-1472.
Mungufeni, P., Habarulema, J.B., Migoya-Orué, Y., & Jurua, E. (2018). Statistical analysis of the correlation between the equatorial electrojet and the occurrence of the equatorial ionisation anomaly over the East African sector. Ann. Geophys., 36, 841–853, https://doi.org/10.5194/angeo-36-841-2018, 2018.
Olwendo, O.J., Yamazaki, Y., Cilliers, P.J., Baki, p., & Doherty, P. (2016). A study on the variability of ionospheric total electron content over the East African low-latitude region and storm time ionospheric variations. Radio Sci., 51, 1503–1518, https://doi.org/10.1002/2015RS005785.
Pandey, K., Sekar, R., Anandarao, B.G., Gupta, S.P., & Chakrabarty, D. (2018). On the occurrence of afternoon counter electrojet over Indian longitudes during June solstice in solar minimum. Journal of Geophysical Research: Space Physics, 123, 2204–2214, https://doi.org/10.1002/2017JA024725.
Paul, A., Roy, B., Ray, S., Das, A., & DasGupta, A. (2011). Characteristics of intense space weather events as observed from a low latitude station during solar minimum. J. Geophysical Research: Space Physics, 116, A10307, https://doi.org/10.1029/2010JA016330.
Rabiu, A.B., Folarin, O.O., Uozumi, T., Hamid, N.S.A., & Yoshikawa, A. (2017). Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. In Annales Geophysicae, 35, 535–545, https://doi.org/10.5194/angeo-35-535-2017.
Rama Rao, P. V. S., Gopi Krishna, S., Niranjan, K., & Prasad, D. S. V. V. D. (2006). Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Annales Geophysicae, 24, 3279–3292.
Rastogi, R.G., & Klobuchar, J. A. (1990). Ionospheric electron content within the equatorial F 2 layer anomaly belt. J. Geophysical Research: Space Physics, 95, 19045–19052, https://doi.org/10.1029/JA095iA11p19045
Rastogi, R. (2004). Electromagnetic induction by the equatorial electrojet. J. Geophysical Journal International, 158, 16–31, https://doi.org/10.1111/j.1365-246X.2004.02128.x.
Romero‐Hernandez, E., Denardini, C. M., Takahashi, H., Gonzalez‐Esparza, J. A., Nogueira, P. A. B., de Padua, M. B., Lotte, R. G., Negreti, P. M. S., Jonah, O. F., Resende, L. C. A., Rodriguez-Martinez6 , M., Sergeeva, M. A. , Barbosa Neto, P. F., de la Luz3, V., Galera Monico, J. F., & Aguilar-Rodriguez, E. (2018). Daytime ionospheric TEC weather study over Latin America. Journal of Geophysical Research: Space Physics, 123(12), doi: https://doi.org/10.1029/2018JA025943
Seemala, G.K., & Valladares C.E. (2011). Statistics of total electron content depletions observed over the Southern American continent for the year 2008. Radio Sci., 46(05), 1-14, https://doi.org/10.1029/2011RS004722.
Siddiqui, T.A., Stolle, C., Lühr, H., & Matzka, J. (2015). On the relationship between weakening of the northern polar vortex and the lunar tidal amplification in the equatorial electrojet. J. Geophysical Research: Space Physics, 120, 10006–10019, https://doi.org/10.1002/2015JA021683.
Soares, G., Yamazaki, Y., Matzka, J., Pinheiro, K., Morschhauser, A., Stolle, C., & Alken, P. (2018). Equatorial counter electrojet longitudinal and seasonal variability in the American sector. J. Geophysical Research: Space Physics, 123, 9906-9920, https://doi.org/10.1029/2018JA025968.
Stolle, C., Manoj, C., Lühr, H., Maus, S., & Alken, P. (2008). Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies. J. Geophysical Research, 113(A9), https://doi.org/10.1029/2007JA012781.
Talari, P., & Panda, S. K. (2019). Occurrences of counter electrojets and possible ionospheric TEC variations round new Moon and full Moon days across the low latitude Indian region, Journal of Applied Geodesy, 13(3), 245-255. https://doi.org/10.1515/jag-2019-0014.
Tsai, H. F., Liu, J. Y., Tsai, W. H., Liu, C. H., Tseng, C. L., & Wu, C. C. (2001). Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. J. Geophysical Research: Space Physics, 106(A12), 30363–30369, https://doi.org/10.1029/2001JA001107.
Venkatesh, K., Fagundes, P.R., Seemala, Gopi, K., de Jesus, R., de Abreu, A. J., & Pillat, V. G. (2014). On the performance of the IRI-2012 and NeQuick2 models during the increasing phase of the unusual 24th solar cycle in the Brazilian equatorial and low-latitude sectors. J. Geophysical Research: Space Physics, 119, 5087–5105, https://doi.org/10.1002/2014JA019960.
Venkatesh, K., Fagundes, P.R., Prasad, D.S.V.V.D., Denardini, C.M., De Abreu, A.J., De Jesus, R., & Gende, M. (2015). Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. J. Geophys. Res. Space Physics, 120, 9117–9131, https://doi.org/10.1002/2015JA021307.
Wan, X., Zhong, J., Xiong, C., Wang, H., Liu, Y., Li, Q., Kuai, J., & Cui, J. (2022). Seasonal and Interhemispheric Effects on the Diurnal Evolution of EIA: Assessed by IGS TEC and IRI-2016 over Peruvian and Indian Sectors, Remote Sens., 14(107), https://doi.org/10.3390/rs14010107.
Yizengaw, E., & Moldwin, M.B. (2009). African meridian B-field education and research. J. Earth, Moon, and Planets, 104, 237-246, https://doi.org/10.1007/s11038-008-9287-2.
Zhang, R., Liu, L., Yu, Y., Le, H., & Chen, Y. (2020). Westward electric fields in the afternoon equatorial ionosphere during geomagnetically quiet times. J. Geophysical Research: Space Physics, 125, https://doi.org/10.1029/2020JA028532.