3D Surface Heat Flow, Low-Temperature Basins and Curie Point Depth of the Iranian Plateau: Hydrocarbon Reservoirs and Iron Deposits

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Corresponding Author, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: moosavi.naeim@gmail.com

2 Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: ebrahimz@ut.ac.ir

چکیده

While Surface Heat Flow (SHF) is an important indicator of the hydrocarbon reservoirs and mineral potentials, the measurements over the Iranian plateau are very sparse. In light of accessing the crustal and lithospheric structure derived from a well-constrained geophysical-petrological model, this study provides a 3D SHF, Curie depth isotherm (580 ºC), Moho temperature and low-temperature sedimentary basins (<150 ºC) over the Iranian plateau and surrounding areas. We solve heat transfer equation using certain thermal boundary condition and user-defined thermophysical parameters for crust. Thermal conductivity of the lithosphere is calculated iteratively. The results indicate that the iron deposits (within the igneous provinces) are spatially correlated with highs in the 3D map of SHF (>60 mW/m2), the shallow Curie isotherm (<40 km) and warm Moho boundary (>800 ºC) where lithospheric thinning or crustal thickening occurs. SHF highs are observed in the northern part of the Zagros collision zone, Central Iran micro-continent and Kopet Dagh. The low-temperature sedimentary basins (<150 ºC) are illustrated by the lows in the 3D map of SHF (<60 mW/m2), deep Curie isotherm (>40 km), and cold Moho boundary (<800 ºC) where lithosphere thickening or crustal thinning is taken place. These basins are distributed in the Oman Sea, Persian Gulf, northern margin of the Arabian plate (Mesopotamian foreland basin), the Caspian Sea and Turan platform.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D Surface Heat Flow, Low-Temperature Basins and Curie Point Depth of the Iranian Plateau: Hydrocarbon Reservoirs and Iron Deposits

نویسندگان [English]

  • Naeim Mousavi 1
  • Vahid Ebrahimzadeh Ardestani 2
1 Corresponding Author, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: moosavi.naeim@gmail.com
2 Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran. E-mail: ebrahimz@ut.ac.ir
چکیده [English]

While Surface Heat Flow (SHF) is an important indicator of the hydrocarbon reservoirs and mineral potentials, the measurements over the Iranian plateau are very sparse. In light of accessing the crustal and lithospheric structure derived from a well-constrained geophysical-petrological model, this study provides a 3D SHF, Curie depth isotherm (580 ºC), Moho temperature and low-temperature sedimentary basins (<150 ºC) over the Iranian plateau and surrounding areas. We solve heat transfer equation using certain thermal boundary condition and user-defined thermophysical parameters for crust. Thermal conductivity of the lithosphere is calculated iteratively. The results indicate that the iron deposits (within the igneous provinces) are spatially correlated with highs in the 3D map of SHF (>60 mW/m2), the shallow Curie isotherm (<40 km) and warm Moho boundary (>800 ºC) where lithospheric thinning or crustal thickening occurs. SHF highs are observed in the northern part of the Zagros collision zone, Central Iran micro-continent and Kopet Dagh. The low-temperature sedimentary basins (<150 ºC) are illustrated by the lows in the 3D map of SHF (<60 mW/m2), deep Curie isotherm (>40 km), and cold Moho boundary (<800 ºC) where lithosphere thickening or crustal thinning is taken place. These basins are distributed in the Oman Sea, Persian Gulf, northern margin of the Arabian plate (Mesopotamian foreland basin), the Caspian Sea and Turan platform.

کلیدواژه‌ها [English]

  • Surface Heat Flow
  • Curie point depth
  • Low-temperature basins
  • Thermophysical properties
  • Lithospheric geotherm
Afshar, A., Norouzi, G.H., Moradzadeh, A., Riahi,  M.A., & Porkhial, S. (2017). Curie Point Depth, Geothermal Gradient and Heat-Flow Estimation and Geothermal Anomaly Exploration from Integrated Analysis of Aeromagnetic and Gravity Data on the Sabalan Area, NW Iran, Pure Appl. Geophys., 174, 1133–1152. https://doi.org/10.1007/s00024-016-1448-z
Allen, P.A., & Allen, J.R. (2013). Basin Analysis: Principles and Application to Petroleum Play Assessment. John Wiley & Sons.
Amante, C., & Eakins, B.W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis, NOAA Technical Memorandum NESDIS NGDC-24, 19 pp.
Artemieva, I.M., & Mooney, W. (2001). Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of geophysical research, 106(B8), 16387–16414.
Artemieva, I.M. (2006). Global 1° x 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution. Tectonophysics, 416(1-4), 245-277. https://doi.org/10.1016/j.tecto.2005.11.022
Braun, J. (2009). Hot blanket in Earth’s deep crust. Nature, 458(7236), 292-293.
Davies, J.H. (2013). Global map of solid Earth surface heat flow. Geochem. Geophys. Geosyst., 14(10), 4608–4622. doi:10.1002/ggge.20271
Entezar-Saadat, V., Motavalli-Anbaran, S.H., & Zeyen, H. (2017). Lithospheric structure of the Eastern Iranian plateau from integrated geophysical modeling: A transect from Makran to the Turan platform. J. of Asian Earth Sci., 138, 357–366.
Fuchs, S., Norden, B., & International Heat Flow Commission. (2021). International Heat Flow Commission. The Global Heat Flow Database: Release 2021, GFZ Data Services. https://doi.org/10.5880/fidgeo.2021.014
Fullea, J., Afonso, J.C., Connolly, J.A.D., Fernàndez, M., García-Castellanos, D., & Zeyen, H. (2009). LitMod3D: an interactive 3-D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle, Geochem. Geophys. Geosyst. 10(8). doi: 10.129/2009GC002391.
Ghassemi, A., & Talbot, C.J. (2006). A new tectonic scenario for the Sanandaj Sirjan zone (Iran). J. Asian Earth Sci., 26, 683–693.
Gibert, B., Seipold, U., Tommasi, A., & Mainprice, D. (2003). Thermal diffusivity of upper mantle rocks: Influence of temperature, pressure, and the deformation fabric. J. Geophys. Res., 108(B8), 2359. doi:10.1029/2002JB002108
Harms, J.C., Cappel, H.N., & Francis, D.C. (1984). The Makran coast of Pakistan: its stratigraphy and hydrocarbon potential. Mar. Geol. Oceanogr. Arab. Sea Coastal Pakistan, 3(27).
Hasterok, D., & Gard, M. (2016). Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivity. Earth and Planetary Science Letters, 450, 197-207.
Hofmeister, A.M. (1999). Mantle values of thermal conductivity and the geotherm from phonon life times. Science, 283, 1699–1706.
Kaislaniemi, L., van Hunen, J., Allen, M.B., & Neill, I. (2014). Sublithospheric small-scale convection—A mechanism for collision zone magmatism. Geology, 42(4), 291–294.
Kaviani, A., Paul, A., Bourova, E., Hatzfeld, D., Pedersen, H., & Mokhtari, M. (2007). A strong seismic velocity contrast in the shallow mantle across the Zagros collision zone (Iran). Geophys. J. Int., 171, 399–410. doi: 10.1111/j.1365-246X.2007.03535.x
Maggi, A., & Priestley, K. (2005). Surface waveform tomography of the Turkish–Iranian plateau. Geophys. J. Int., 160, 1068–1080.
Majorowicz, J., Polkowski, M., & Grad, M.  (2019). Thermal properties of the crust and the lithosphere–asthenosphere boundary in the area of Poland from the heat flow variability and seismic data. International Journal of Earth Science, 108, 649–672.
Molinaro, M., Zeyen, H., & Laurencin, X. (2005). Lithospheric structure beneath the south‐eastern Zagros Mountains, Iran: Recent slab break off?. Terra Nova, (17)1, 1–6.
Motavalli-Anbaran, S.H., Zeyen, H., Brunet, M.F., & Ardestani, V.E. (2011). Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modelling. Tectonics, 30, TC5012. doi:10.1029/2011TC002934
Mousavi, N., Ardestani, V.E., & Moosavi, N. (2022). Slab extension and normal faulting in a low-angle subduction-related environment: an example of the Makran subduction zone (Iran-Pakistan). Journal of Asian Earth Sciences, 233, 105244. doi:10.1016/j.jseaes.2022.105244
Mousavi, N., & Ardestani, V.E. (2022). The nature of the South Caspian Basin: oceanic crust formation and lithospheric mantle buoyancy. Physics of the Earth and Planetary Interiors, 325, 106863. doi: 10.1016/j.pepi.2022.106863
Mousavi, N., & Fullea, J. (2020). 3D thermochemical structure of lithospheric mantle beneath the Iranian plateau and surrounding areas from geophysical-petrological modeling. Geophysical Journal International, 222(2), 1295–1315. doi: 10.1093/gji/ggaa262
Mousavi, N., & Ebbing, J. (2018). Basement characterization and crustal structure beneath the Arabia–Eurasia collision (Iran): a combined gravity and magnetic study. Tectonophysics, 731-732, 155-171. doi:10.1016/j.tecto.2018.03.018
Mousavi, N., Ebbing, J., & Ardestani, V.E. (2017). Interpretation of lithospheric and crustal structure across Zagros Mountains using topography, geoid, and potential field data. Scientific Quarterly Journal of Geosciences, 26(103), 119-128, doi:10.22071/gsj.2017.46771
Pollack, H.N., Hurter, S.J., & Johnson, J.R. (1993). Heat flow from the Earth’s interior: Analysis of the global data set, Rev. Geophys., 31(3), 267–280. doi:10.1029/93RG01249
Priestley, K., McKenzie, D., Barron, J., Tatar, M., & Debayle, E. (2012). The Zagros core: Deformation of the continental lithospheric mantle. Geochemistry Geophysics Geosystems, 13, Q11014.
Ranalli, G., & Rybach, L. (2005). Heat flow, heat transfer and lithosphere rheology in geothermal areas: Features and examples. Journal of Volcanology and Geothermal Research, 148, 3-19. doi:10.1016/j.jvolgeores.2005.04.010
Schaeffer, A.J., & Lebedev, S. (2013). Global shear-speed structure of the upper mantle and transition zone. Geophys. J. Int., 194, 417–449.
Smith, G.L., McNeill, L.C., Wang, K., He, J., & Henstock, T.J. (2013). Thermal structure and megathrust seismogenic potential of the Makran subduction zone. Geophys. Res. Lett., 40(8), 1528–1533.
Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F., & Wobbe, F. (2013). Generic mapping tools: improved version released. EOS Trans. AGU, 94(45), 409–410.