دسته‌بندی ذرات معلق جوی ‌با استفاده از داده‌های پارامتر درجه قطبش خطی شیدسنج‌خورشیدی

نوع مقاله : مقاله پژوهشی

نویسندگان

ﮔﺮوه فیزیک، داﻧﺸﻜﺪه ﻋﻠﻮم، داﻧﺸﮕﺎه زﻧﺠﺎن، زﻧﺠﺎن، اﻳﺮان.

چکیده

هواویزها ذرات ریز جامد یا مایع معلق در هوا هستند که اثرات مهمی بر سلامتی انسان‌ها، تغییرات اقلیمی، کیفیت هوا و بودجه تابشی جو زمین دارند. دسته‌بندی انواع مختلف آنها تأثیر بسیار زیادی در تخمین دقیق اثرات آنها در تغییرات اقلیمی دارد. در این مقاله قصد داریم انواع مختلف ذرات جوی را با استفاده از اندازه‌گیری‌های مد ‌قطبیده ‌شیدسنج ‌خورشیدی دسته‌بندی کنیم. به همین منظور، داده‌های چهار سایت بانزیمبو، پکن، آل-آرنسیلو و مینسک که به‌ترتیب دارای هواویز غالب غباری‏، شهری-صنعتی‏، دریایی و زیست‌توده هستند، از شبکه ارونت انتخاب شدند. در اینجا از سه پارامتر عمق‌اپتیکی هواویزها، نمای آنگستروم و درجه قطبش خطی استخراج شده از داده‌های شیدسنج خورشیدی استفاده شده است. نتایج نشان می‌دهند که میانگین پارامتر بیشینه مقدار ‌درجه ‌قطبش‌ خطی (انحراف معیار) در طول‏‌موج 870 نانومتر برای ‌هواویز غالب غباری (بانزیمبو)، شهری-صنعتی (پکن)، دریایی (آل-آرنسیلو) و زیست‌توده (مینسک) به‌ترتیب برابر 14/0‎‏ (05/0)‎، 35/0‎‎‏ (10/0)، 47/0‎‎‏ (08/0) و 37/0‎‎‏ (08/0) هستند. در نهایت نتایج نشان می‌دهند که پارامتر درجه‌قطبش‌‌خطی قادر به جداسازی هواویزهای غباری، شهری-صنعتی و دریایی از یکدیگر است. اما هواویزهای زیست‌توده همپوشانی زیادی با هواویزهای شهری-صنعتی دارد و این پارامتر توانایی جداسازی آنها را ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Categorization of atmospheric suspended particles using degree of linear polarization parameter data of sun-photometer

نویسندگان [English]

  • Ali Bayat
  • Amir Jafari
Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.
چکیده [English]

Aerosols are solid or liquid particles suspended in the earth's atmosphere, which enter the earth's atmosphere from both natural and human sources. The wind blowing in the deserts, the evaporation of oceans and seas, the eruption of volcanoes, and the burning of forests and pastures are natural sources, and the burning of fossil fuels and the change of the earth's surface cover are human sources of their production. Aerosols can be classified into four types: dusty, marine, urban-industrial, and biomass burning particles. Due to the significant temporal and spatial changes of aerosols and for properly understand their climatic effects, we need to use long-term measurements of satellites and ground-based instruments. Measurements made from space and ground have allowed us to have a detailed view of the properties and effects of different types of atmospheric particles. Ground-based remote sensing is one of the powerful methods for determining the optical and physical properties of atmospheric aerosols.
The sun-photometer (SPM) is a spectrometer that records the intensity of the sun's radiation usually in four wavelength channels of 440, 675, 870, and 1020 nm in two modes of measuring the sun and the sky with a limited viewing angle of 1.2 degrees during the day. Spectral aerosol optical depth, columnar water vapor, Angstrom exponent, single scattering albedo, polarized phase function, the real and imaginary refractive index of aerosols, and degree of linear polarization of sunlight are characteristics of atmospheric particles that are extracted from SPM measurements.
There are different methods for classifying aerosols using data extracted from SPM measurements. One of the most common methods is to use aerosol optical depth data (a measure of the amount of atmospheric suspended particles) in terms of the Angstrom exponent (a qualitative measure of the dimensions of atmospheric particles). By combining other parameters obtained from the mode of the sun and the sky of the SPM, such as the aerosol optical depth, Angstrom exponent, particle size distribution, and refractive index, atmospheric aerosols can be classified. Our aim in this article is to investigate the ability of the degree of linear polarization parameter to classify the atmospheric particles. The degree of linear polarization measures the linear polarization of sunlight scattered by atmospheric particles (molecules and aerosols). For this purpose, the data of four sites of Banizoumbou, Beijing, El-Arenosillo, and Minsk, which have dusty, urban-industrial, marine, and biomass-dominant particles, respectively, were selected from the AERONET (AErosol RObotic NETwork) data.
This paper uses three parameters of aerosol optical depth, Angstrom exponent, and degree of linear polarization extracted from SPM data. The results show that the maximum value of the degree of linear polarization (standard deviation) at the wavelength of 870 nm for dusty (Banizoumbou), urban-industrial (Beijing), marine (El-Arenosillo) and biomass (Minsk) aerosols are equal to 0.14 (0.05), 0.35 (0.10), 0.47 (0.08) and 0.37 (0.08) respectively. Therefore, the parameter of the degree of linear polarization is able to separate dusty, urban-industrial, and marine atmospheric particles from each other. However, biomass particles overlap a lot with urban-industrial aerosols and cannot be separated from each other.

کلیدواژه‌ها [English]

  • Aerosols
  • dust
  • Sun-photometer
  • Degree of linear polarization
  • Categorization
Abdi Vishkaee, F., Flamant, C., Cuesta, J., Oolman, L., Flamant, P., & Khalesifard, H. R. (2012). Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study. Journal of Geophysical Research: Atmospheres, 117(D3), 1-14.
Ångström, A. (1929). On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler, 11(2), 156-166.
Bayat, A., Masoumi, A., & Khalesifard, H. R. (2011). Retrieval of atmospheric optical parameters from ground-based sun-photometer measurements for Zanjan, Iran. Atmospheric Measurement Techniques, 4(5), 857-863.
Bibi, H., Alam, K., Blaschke, T., Bibi, S., & Iqbal, M. J. (2017). Long-term (2007–2013) analysis of aerosol optical properties over four locations in the Indo-Gangetic plains: erratum. Applied Optics, 56(23), 6548-6548.
Bodhaine, B. A., Wood, N. B., Dutton, E. G., & Slusser, J. R. (1999). On Rayleigh optical depth calculations. Journal of Atmospheric and Oceanic Technology, 16(11), 1854-1861.
Weitkamp, C. (Ed.). (2006). Lidar: range-resolved optical remote sensing of the atmosphere (Vol. 102). Springer Science & Business.
Cheng, C., Zhengqiang, L., Donghui, L., Kaitao, L., Ying, Z., Weizhen, H., & Yisong, X. (2014, March). Ground-based Polarization Remote Sensing of Atmospheric Aerosols and the Correlation between Polarization Degree and PM2.5. In IOP Conference Series: Earth and Environmental Science, 17(1), 012039. IOP Publishing.
Dubovik, O., Holben, B., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D., & Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the atmospheric sciences, 59(3), 590-608.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M., Yang, P., Eck, T.F., Volten, H., Muñoz, O., Veihelmann, B., & Van der Zande, W.J. (2006). Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. Journal of Geophysical Research: Atmospheres, 111(D11).
Giles, D.M., Holben, B.N., Eck, T.F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R.R., Thompson, A.M., & Schafer, J.S. (2012). An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. Journal of Geophysical Research: Atmospheres, 117(D17), 1-16.
Holben, B.N., Eck, T.F., Slutsker, I.A., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., & Lavenu, F. (1998). AERONET—A federated instrument network and data archive for aerosol characterization. Remote sensing of environment, 66(1), 1-16.
Halthore, R. N., Eck, T. F., Holben, B. N., & Markham, B. L. (1997). Sun photometric measurements of atmospheric water vapor column abundance in the 940‐nm band. Journal of Geophysical Research: Atmospheres, 102(D4), 4343-4352.
Hansen, J. E., & Travis, L. D. (1974). Light scattering in planetary atmospheres. Space science reviews, 16(4), 527-610.
Kaufman, Y.J., Tanré, D., Gordon, H.R., Nakajima, T., Lenoble, J., Frouin, R., Grassl, H., Herman, B.M., King, M.D., & Teillet, P.M. (1997). Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. Journal of Geophysical Research: Atmospheres, 102(D14), 16815-16830.
Kaufman, Y. J., Tanré, D., & Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419(6903), 215-223.
Khademi, F., & Bayat, A. (2021). Classification of aerosol types using AERONET version 3 data over Kuwait City. Atmospheric Environment, 265, 118716.
Kokhanovsky, A. (2011). Light Scattering Reviews, Vol. 6: Light Scattering and Remote Sensing of Atmosphere and Surface. Springer Berlin Heidelberg.
Li, Z., Goloub, P., Dubovik, O., Blarel, L., Zhang, W., Podvin, T., Sinyuk, A., Sorokin, M., Chen, H., Holben, B., & Tanré, D. (2009). Improvements for ground-based remote sensing of atmospheric aerosol properties by additional polarimetric measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(17), 1954-1961.
Li, Z., Blarel, L., Podvin, T., Goloub, P., & Chen, L. (2010). Calibration of the degree of linear polarization measurement of polarized radiometer using solar light. Applied optics, 49(8), 1249-1256.
Li, Z., Gu, X., Wang, L., Li, D., Xie, Y., Li, K., Dubovik, O., Schuster, G., Goloub, P., Zhang, Y., & Li, L. (2013). Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmospheric Chemistry and Physics, 13(20), 10171-10183.
Li, Z., Li, K., Li, L., Xu, H., Xie, Y., Ma, Y., Li, D., Goloub, P., Yuan, Y., & Zheng, X. (2018). Calibration of the degree of linear polarization measurements of the polarized Sun-sky radiometer based on the POLBOX system. Applied Optics, 57(5), 1011-1018.
Masoumi, A., Khalesifard, H. R., Bayat, A., & Moradhaseli, R. (2013). Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran. Atmospheric research, 120, 343-355.
Mishchenko, M. I., Yatskiv, Y. S., Rosenbush, V. K., & Videen, G. (Eds.). (2011). Polarimetric detection, characterization and remote sensing. Springer.
Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2017). Introduction to optics. Cambridge University Press.
Rollin, E. M. (2000). An introduction to the use of Sun-photometry for the atmospheric correction of airborne sensor data. In Annual Meeting of the Users of the NERC Airborne Remote Sensing Facility (NERC ARSF), Keyworth, Nottingham, UK.
Shin, S. K., Tesche, M., Kim, K., Kezoudi, M., Tatarov, B., Müller, D., & Noh, Y. (2018). On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product. Atmospheric Chemistry and Physics, 18(17), 12735-12746.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., & Miller, H. (2007). IPCC fourth assessment report (AR4). Climate change, 374.
Toledano, C., Cachorro, V. E., Berjon, A., De Frutos, A. M., Sorribas, M., De la Morena, B. A., & Goloub, P. (2007). Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(624), 795-807.
Zdunkowski, W., Trautmann, T., & Bott, A. (2007). Radiation in the atmosphere: a course in theoretical meteorology. Cambridge University Press.