پگاهفر، ن. (1402). ارزیابی عملکرد دادههایERA5 در برآورد انواع مختلف CAPE و CIN در ایستگاههای جو بالا در ایران. مجله فیزیک زمین و فضا، 50(1)، 249-231.
صادقی حسینی، س. ع. و رضائیان، م. (1385). بررسی تعدادی از شاخصهای ناپایداری و پتانسیل بارورسازی ابرهای همرفتی منطقه اصفهان. مجله فیزیک زمین و فضا، 32(2)، 83-98.
طهماسبیپاشا، ا.؛ میرزایی، م. و محبالحجه، ع. (1400)، ارتباط شاخصهای همرفتی و دورپیوندی در منطقه غرب آسیا، مجله ژئوفیزیک ایران، 15(3)، 1-26.
قویدل رحیمی، ی.؛ عباسی، ا. و فرجزاده، م. (1397)، واکاوی دینامیک و ترمودینامیک شدیدترین چرخند حارهای مؤثر بر سواحل جنوبی ایران. نشریه تحلیل فضایی مخاطرات محیطی، 5(1)، 97-112.
مجرد، ف.؛ کوشکی، س.؛ معصومپور، ج. و میری، م. (1396). تحلیل شاخصهای ناپایداری توفانهای تندری در ایران با استفاده از دادههای بازتحلیل. نشریه تحلیل فضایی مخاطرات محیطی، 4، 33-48.
Allen, J.T., & Karoly, D.J. (2014). A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. International Journal of Climatology, 34, 81–97.
Brooks, H. E., Doswell III, C. A., Zhang, X., Chernokulsky, A. A., Tochimoto, E., Hanstrum, B., de Lima Nascimento, E., Sills, D.M., Antonescu, B. & Barrett, B. (2019). A century of progress in severe convective storm research and forecasting. Meteorological Monographs, 59, 18-1.
Brooks, H. E., Lee, J. W., & Craven, J. P. (2003). The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmospheric Research, 67, 73-94.
Chen, Q., Fan, J., Hagos, S., Gustafson Jr, W. I., & Berg, L. K. (2015). Roles of wind shear at different vertical levels: Cloud system organization and properties. Journal of Geophysical Research: Atmospheres, 120(13), 6551-6574.
Coffer, B. E., Parker, M. D., Thompson, R. L., Smith, B. T., & Jewell, R. E. (2019). Using near-ground storm relative helicity in supercell tornado forecasting. Weather and Forecasting, 34(5), 1417-1435.
Coffer, B. E., Taszarek, M., & Parker, M. D. (2020). Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Weather and Forecasting, 35(6), 2621-2638.
Coniglio, M. C., & Parker, M. D. (2020). Insights into supercells and their environments from three decades of targeted radiosonde observations. Monthly Weather Review, 148(12), 4893-4915.
Craven, J. P., Brooks, H. E., & Hart, J. A. (2004). Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig, 28(1), 13-24.
Czernecki, B., Taszarek, M., Kolendowicz, L., & Konarski, J. (2016). Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland. Atmospheric research, 167, 118-128.
Doswell III, C. A., & Schultz, D. M. (2006). On the use of indices and parameters in forecasting severe storms. E-Journal of Severe Storms Meteorology, 1(3), 1-22.
Fluck, E., Kunz, M., Geissbuehler, P., & Ritz, S. P. (2021). Radar-based assessment of hail frequency in Europe. Natural Hazards and Earth System Sciences, 21(2), 683-701.
Galway, J. G. (1956). The lifted index as a predictor of latent instability. Bulletin of the American Meteorological Society, 37(10), 528-529.
Gensini, V.A., Mote, T.L., & Brooks, H.E. (2014). Severe-thunderstorm reanalysis environments and collocated radiosonde observations. Journal of Applied Meteorology and Climatology, 53, 742–751.
Glazer, R. H., Torres-Alavez, J. A., Coppola, E., Giorgi, F., Das, S., Ashfaq, M., & Sines, T. (2021). Projected changes to severe thunderstorm environments as a result of twenty-first century warming from RegCM CORDEX-CORE simulations. Climate Dynamics, 57, 1595-1613.
Grams, J. S., Thompson, R. L., Snively, D. V., Prentice, J. A., Hodges, G. M., & Reames, L. J. (2012). A climatology and comparison of parameters for significant tornado events in the United States. Weather and forecasting, 27(1), 106-123.
Gyakum, J. R., & Cai, M. (1990). An observational study of strong vertical wind shear over North America during the 1983/84 cold season. Journal of Applied Meteorology and Climatology, 29(9), 902-915.
Li, F., Chavas, D. R., Reed, K. A., & Dawson II, D. T. (2020). Climatology of severe local storm environments and synoptic-scale features over North America in ERA5 reanalysis and CAM6 simulation. Journal of Climate, 33(19), 8339-8365.
Pilguj, N., Taszarek, M., Allen, J. T., & Hoogewind, K. A. (2022). Are trends in convective parameters over the United States and Europe consistent between reanalyses and observations?. Journal of Climate, 35(12), 3605-3626.
Pistotnik, G., Groenemeijer, P., & Sausen, R. (2016). Validation of convective parameters in MPI-ESM decadal hindcasts (1971–2012) against ERA-Interim reanalyses. Meteorology, 25, 753–766.
Prein, A.F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., & Brisson, E. (2015). A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of geophysics, 53(2), 323-361.
Púčik, T., Groenemeijer, P., Rädler, A.T., Tijssen, L., Nikulin, G., Prein, A.F., van Meijgaard, E., Fealy, R., Jacob, D., & Teichmann, C. (2017). Future changes in European severe convection environments in a regional climate model ensemble. Journal of Climate, 30(17), 6771-6794.
Rasmussen, E. N., & Blanchard, D. O. (1998). A baseline climatology of sounding-derived supercell andtornado forecast parameters. Weather and forecasting, 13(4), 1148-1164.
Rodríguez, O., & Bech, J. (2021). Tornadic environments in the Iberian Peninsula and the Balearic Islands based on ERA5 reanalysis. International Journal of Climatology, 41, E1959-E1979.
Saleh, N., Gharaylou, M., Farahani, M. M., & Alizadeh, O. (2023). Performance of lightning potential index, lightning threat index, and the product of CAPE and precipitation in the WRF model. Earth and Space Science, 10(9), e2023EA003104.
Taszarek, M., Brooks, H.E., & Czernecki, B. (2017). Sounding-derived parameters associated with convective hazards in Europe. Monthly Weather Review, 145, 1511–1528.
Taszarek, M., Brooks, H.E., Czernecki, B., Szuster, P., & Fortuniak, K. (2018). Climatological aspects of convective parameters over Europe: A comparison of ERA-Interim and sounding data. Journal of Climate, 31(11), pp.4281-4308.
Taszarek, M., Allen, J. T., Púčik, T., Hoogewind, K. A., & Brooks, H. E. (2020). Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. Journal of Climate, 33(23), 10263-10286.
Taszarek, M., Allen, J. T., Marchio, M., & Brooks, H. E. (2021a). Global climatology and trends in convective environments from ERA5 and rawinsonde data. NPJ climate and atmospheric science, 4(1), 35.
Taszarek, M., Pilguj, N., Allen, J. T., Gensini, V., Brooks, H. E., & Szuster, P. (2021b). Comparison of convective parameters derived from ERA5 and MERRA-2 with rawinsonde data over Europe and North America. Journal of Climate, 34(8), 3211-3237.
Thompson, R. L., Mead, C. M., & Edwards, R. (2007). Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Weather and forecasting, 22(1), 102-115.
Thompson, R. L., Smith, B. T., Grams, J. S., Dean, A. R., & Broyles, C. (2012). Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Weather and forecasting, 27(5), 1136-1154.
Tyagi, B., Naresh Krishna, V., & Satyanarayana, A. N. V. (2011). Study of thermodynamic indices in forecasting pre-monsoon thunderstorms over Kolkata during STORM pilot phase 2006–2008. Natural hazards, 56, 681-698.
Trapp, R. J., Halvorson, B. A., & Diffenbaugh, N. S. (2007). Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. Journal of Geophysical Research: Atmospheres, 112(D20).
Varga, Á. J., & Breuer, H. (2022). Evaluation of convective parameters derived from pressure level and native ERA5 data and different resolution WRF climate simulations over Central Europe. Climate Dynamics, 58(5-6), 1569-1585.