ارزیابی داده‌های بازتحلیل ERA5 در برآورد پارامترهای همرفتی با استفاده از داده‌های رادیوگمانه در ایران

نوع مقاله : مقاله پژوهشی

نویسنده

پژوهشکده علوم جوی، پژوهشگاه ملی اقیانوس‌شناسی و علوم جوی، تهران، ایران.

چکیده

در این تحقیق داده‌های ERA5 در برآورد دو دسته پارامتر همرفتی شامل شاخص بالابری LI (Lifted Index) و چینش قائم بردار باد در سه لایه WVSH (Vertical Wind Shear) در ایستگاه‌های جو بالا در ایران در بازه 1990-2020 به‌کمک شاخص‌های آماری ارزیابی شد. در مقیاس ماهانه، کمینه (بیشینه) مقدار RMSE برای VWSH-1000، VWSH-3000 و VWSH-6000 به‌ترتیب حدود 3 (5/8)، 36/3 (84/9) و 4 (20) متر بر ثانیه بود. داده‌های بازتحلیل مقدار VWSH-1000 را در تمامی ایستگاه‌ها (به‌جز ایستگاه اهواز) فروبرآورد کرد. برآورد پارامترهای VWSH-3000 و VWSH-6000 با فرابرآورد/فروبرآورد در ماه‌های مختلف در ایستگاه‌ها همراه بود. در اغلب ایستگاه‌ها بیشترین (کمترین) خطا در ماه‌های سرد (گرم) رخ داد. روند تغییرات هر سه پارامتر VWSH نشان داد که با افزایش ارتفاع لایه، عملکرد ERA5 در برآورد پارامتر چینش در ایستگاه‌ها به‌ویژه در سال‌های اخیر بهبود یافته است. داده‌های بازتحلیل شاخص LI را با بیشترین (کمترین) خطا در ماه‌های گرم (سرد) سال تولید کرد. در کل بازه مورد مطالعه برای هر ایستگاه، داده‌های بازتحلیل حداقل 10 کلوین (در ایستگاه زاهدان) و حداکثر 15 کلوین (در ایستگاه تهران) در برآورد LI خطا داشت. به غیر از ایستگاه اهواز، در تمامی ایستگاه‌ها LI فروبرآورد شد. میانگین ماهانه LI بازتحلیل بیشتر حاوی شرایط ناپایدار بود در حالی‌که مقادیر مشاهداتی بر پایدار بودن جو دلالت داشت. با این‌حال در ایستگاه‌های مشهد و تهران میان روند مقادیر میانگین سالانه بازتحلیل و مشاهداتی همخوانی وجود داشت، درحالی‌که در سایر ایستگاه‌ها این همخوانی در سال‌های آخر به‌وضوح دیده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of ERA5 reanalysis data in convective parameters estimation of vertical wind shear and lifted index using radiosonde data in Iran

نویسنده [English]

  • Nafiseh Pegahfar
Atmospheric Science Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
چکیده [English]

The variety of produced variables at the surface and atmospheric pressure levels, appropriate resolution, and global coverage of the ERA5 reanalysis data have led its consideration both in numerous climate research studies and for predicting atmospheric parameters. The initial step in using reanalysis data involves its verification using observational data. Despite the scattered nature of measuring stations, observational data remains a practical dataset for this purpose, particularly in investigating thunderstorms. In this research, we have verified the accuracy of ERA5 reanalysis data in estimating of two convective parameters: the Lifted Index (LI) and Vertical Wind Shear (WVSH). To achieve this, we analyzed radiosonde data from nine stations across Iran (including Tabriz, Mashhad, Tehran, Kermanshah, Isfahan, Ahvaz, Kerman, Shiraz and Zahedan stations) in the period of 1990-2020. Statistical indicators were employed for comparison between the reanalysis data and observational data. Several constraints were applied to the data. For instance, both temperature and dew point profiles should be measured simultaneously. Profiles that terminated below the 6 km above the ground or provided data at fewer than 10 pressure levels were excluded. Additionally, some constrains were utilized to quality control wind and temperature gradients. Specifically: (I) Profiles were removed if the lapse rate in the mid-troposphere exceeded 9 K/km, (II) Profiles were excluded if the lapse rate in the low-troposphere exceeded 11 K/km, (III) Profiles were discarded if VWSH-1000 exceeded 35 m/s, (IV) Profiles were omitted if VWSH-3000 exceeded 45 m/s and (V) Profiles were removed if VWSH-6000 exceeded 70 m/s.
The VWSH was calculated across three layers at altitudes of 1000, 3000 and 6000 meters from the surface. Investigations were conducted on daily, monthly, seasonal and long-term time scales. On a monthly scale, the minimum (maximum) root mean square errors (RMSE) for VWSH-1000, VWSH-3000, and VWSH-6000 were approximately 3 (8.5), 3.36 (9.84), and 4 (20) m/s, respectively. The results showed that the ERA5 reanalysis data consistently underestimated the value of VWSH-1000 across all stations (except Ahvaz station in recent years). The estimation of VWSH-3000 and VWSH-6000 parameters exhibited both overestimation and underestimation in different months. Notably, the highest error in ERA5 data for VWSH-6000 occurred during January. Across most stations, the largest errors were observed during cold months (particularly for the VWSH-6000 parameter), while the smallest errors occurred during warm months. In conclusion, the results suggest that as the height of the investigated layer increases, the performance of ERA5 in generating the considered VWSH parameters at the stations improves, especially in recent years.
A comparison between reanalysis-LI and observational-LI indicatedes that the highest (lowest) error occurs during warm (cold) months of the year. Throughout the study period, the reanalysis data produced an error of at least 10 K (at Zahedan station) and up to 15 K (at Tehran station) in LI estimation. Except for Ahvaz station, LI was consistently underestimated across all stations. The monthly mean of reanalysis-LI reflected more unstable conditions, whereas the observed values indicated a more stable atmosphere. Consequently, reanalysis-LI may not be a suitable metric for distinguishing stability and instability in the considered stations. However, in Mashhad and Tehran stations, there were consistencies between the trend of annual average values from reanalysis and observational data. In other stations, this agreement becomes evident in recent years. However, in some stations, the annual average value of reanalysis LI has overcome the observations, while in others, it is the opposite.

کلیدواژه‌ها [English]

  • ERA5 reanalysis data
  • vertical wind shear
  • lifted index
  • radiosonde
پگاه‌فر، ن. (1402). ارزیابی عملکرد داده‌هایERA5 در برآورد انواع مختلف CAPE و CIN در ایستگاه‌های جو بالا در ایران. مجله فیزیک زمین و فضا، 50(1)، 249-231.
صادقی حسینی، س. ع. و رضائیان، م. (1385). بررسی تعدادی از شاخص‌های ناپایداری و پتانسیل بارورسازی ابرهای همرفتی منطقه اصفهان. مجله فیزیک زمین و فضا، 32(2)، 83-98.
طهماسبی‌پاشا، ا.؛ میرزایی، م. و محب‌الحجه، ع. (1400)، ارتباط شاخص‌های همرفتی و دورپیوندی در منطقه غرب آسیا، مجله ژئوفیزیک ایران، 15(3)، 1-26.
قویدل رحیمی، ی.؛ عباسی، ا. و فرج‌زاده، م. (1397)، واکاوی دینامیک و ترمودینامیک شدیدترین چرخند حاره‌ای مؤثر بر سواحل جنوبی ایران. نشریه تحلیل فضایی مخاطرات محیطی، 5(1)، 97-112.
مجرد، ف.؛ کوشکی، س.؛ معصوم­پور، ج. و میری، م. (1396). تحلیل شاخص‌های ناپایداری توفان‌های تندری در ایران با استفاده از داده‌های بازتحلیل. نشریه تحلیل فضایی مخاطرات محیطی، 4، 33-48.
Allen, J.T., & Karoly, D.J. (2014). A climatology of Australian severe thunderstorm environments 1979–2011: Inter-annual variability and ENSO influence. International Journal of Climatology, 34, 81–97.
Brooks, H. E., Doswell III, C. A., Zhang, X., Chernokulsky, A. A., Tochimoto, E., Hanstrum, B., de Lima Nascimento, E., Sills, D.M., Antonescu, B. & Barrett, B. (2019). A century of progress in severe convective storm research and forecasting. Meteorological Monographs, 59, 18-1.
Brooks, H. E., Lee, J. W., & Craven, J. P. (2003). The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmospheric Research, 67, 73-94.
Chen, Q., Fan, J., Hagos, S., Gustafson Jr, W. I., & Berg, L. K. (2015). Roles of wind shear at different vertical levels: Cloud system organization and properties. Journal of Geophysical Research: Atmospheres, 120(13), 6551-6574.
Coffer, B. E., Parker, M. D., Thompson, R. L., Smith, B. T., & Jewell, R. E. (2019). Using near-ground storm relative helicity in supercell tornado forecasting. Weather and Forecasting, 34(5), 1417-1435.
Coffer, B. E., Taszarek, M., & Parker, M. D. (2020). Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Weather and Forecasting, 35(6), 2621-2638.
Coniglio, M. C., & Parker, M. D. (2020). Insights into supercells and their environments from three decades of targeted radiosonde observations. Monthly Weather Review, 148(12), 4893-4915.
Craven, J. P., Brooks, H. E., & Hart, J. A. (2004). Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig, 28(1), 13-24.
Czernecki, B., Taszarek, M., Kolendowicz, L., & Konarski, J. (2016). Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland. Atmospheric research, 167, 118-128.
Doswell III, C. A., & Schultz, D. M. (2006). On the use of indices and parameters in forecasting severe storms. E-Journal of Severe Storms Meteorology, 1(3), 1-22.
Fluck, E., Kunz, M., Geissbuehler, P., & Ritz, S. P. (2021). Radar-based assessment of hail frequency in Europe. Natural Hazards and Earth System Sciences, 21(2), 683-701.
Galway, J. G. (1956). The lifted index as a predictor of latent instability. Bulletin of the American Meteorological Society, 37(10), 528-529.
Gensini, V.A., Mote, T.L., & Brooks, H.E. (2014). Severe-thunderstorm reanalysis environments and collocated radiosonde observations. Journal of Applied Meteorology and Climatology, 53, 742–751.
Glazer, R. H., Torres-Alavez, J. A., Coppola, E., Giorgi, F., Das, S., Ashfaq, M., & Sines, T. (2021). Projected changes to severe thunderstorm environments as a result of twenty-first century warming from RegCM CORDEX-CORE simulations. Climate Dynamics, 57, 1595-1613.
Grams, J. S., Thompson, R. L., Snively, D. V., Prentice, J. A., Hodges, G. M., & Reames, L. J. (2012). A climatology and comparison of parameters for significant tornado events in the United States. Weather and forecasting, 27(1), 106-123.
Gyakum, J. R., & Cai, M. (1990). An observational study of strong vertical wind shear over North America during the 1983/84 cold season. Journal of Applied Meteorology and Climatology, 29(9), 902-915.
Li, F., Chavas, D. R., Reed, K. A., & Dawson II, D. T. (2020). Climatology of severe local storm environments and synoptic-scale features over North America in ERA5 reanalysis and CAM6 simulation. Journal of Climate, 33(19), 8339-8365.
Pilguj, N., Taszarek, M., Allen, J. T., & Hoogewind, K. A. (2022). Are trends in convective parameters over the United States and Europe consistent between reanalyses and observations?. Journal of Climate, 35(12), 3605-3626.
Pistotnik, G., Groenemeijer, P., & Sausen, R. (2016). Validation of convective parameters in MPI-ESM decadal hindcasts (1971–2012) against ERA-Interim reanalyses. Meteorology, 25, 753–766.
Prein, A.F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., & Brisson, E. (2015). A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of geophysics, 53(2), 323-361.
Púčik, T., Groenemeijer, P., Rädler, A.T., Tijssen, L., Nikulin, G., Prein, A.F., van Meijgaard, E., Fealy, R., Jacob, D., & Teichmann, C. (2017). Future changes in European severe convection environments in a regional climate model ensemble. Journal of Climate, 30(17), 6771-6794.
Rasmussen, E. N., & Blanchard, D. O. (1998). A baseline climatology of sounding-derived supercell andtornado forecast parameters. Weather and forecasting, 13(4), 1148-1164.
Rodríguez, O., & Bech, J. (2021). Tornadic environments in the Iberian Peninsula and the Balearic Islands based on ERA5 reanalysis. International Journal of Climatology, 41, E1959-E1979.
Saleh, N., Gharaylou, M., Farahani, M. M., & Alizadeh, O. (2023). Performance of lightning potential index, lightning threat index, and the product of CAPE and precipitation in the WRF model. Earth and Space Science, 10(9), e2023EA003104.
Taszarek, M., Brooks, H.E., & Czernecki, B. (2017). Sounding-derived parameters associated with convective hazards in Europe. Monthly Weather Review, 145, 1511–1528.
Taszarek, M., Brooks, H.E., Czernecki, B., Szuster, P., & Fortuniak, K. (2018). Climatological aspects of convective parameters over Europe: A comparison of ERA-Interim and sounding data. Journal of Climate, 31(11), pp.4281-4308.
Taszarek, M., Allen, J. T., Púčik, T., Hoogewind, K. A., & Brooks, H. E. (2020). Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. Journal of Climate, 33(23), 10263-10286.
Taszarek, M., Allen, J. T., Marchio, M., & Brooks, H. E. (2021a). Global climatology and trends in convective environments from ERA5 and rawinsonde data. NPJ climate and atmospheric science, 4(1), 35.
Taszarek, M., Pilguj, N., Allen, J. T., Gensini, V., Brooks, H. E., & Szuster, P. (2021b). Comparison of convective parameters derived from ERA5 and MERRA-2 with rawinsonde data over Europe and North America. Journal of Climate, 34(8), 3211-3237.
Thompson, R. L., Mead, C. M., & Edwards, R. (2007). Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Weather and forecasting, 22(1), 102-115.
Thompson, R. L., Smith, B. T., Grams, J. S., Dean, A. R., & Broyles, C. (2012). Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Weather and forecasting, 27(5), 1136-1154.
Tyagi, B., Naresh Krishna, V., & Satyanarayana, A. N. V. (2011). Study of thermodynamic indices in forecasting pre-monsoon thunderstorms over Kolkata during STORM pilot phase 2006–2008. Natural hazards, 56, 681-698.
Trapp, R. J., Halvorson, B. A., & Diffenbaugh, N. S. (2007). Telescoping, multimodel approaches to evaluate extreme convective weather under future climates. Journal of Geophysical Research: Atmospheres, 112(D20).
Varga, Á. J., & Breuer, H. (2022). Evaluation of convective parameters derived from pressure level and native ERA5 data and different resolution WRF climate simulations over Central Europe. Climate Dynamics, 58(5-6), 1569-1585.