شناسایی درزه‌ها و تعیین جهت‌یافتگی آن با استفاده از تحلیل نتایج برداشت مقاومت‌ویژه آزیموتی آرایه مربعی در غرب افیولیت سبزوار

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

محدوده موردمطالعه در شمال‌غرب شهرستان سبزوار و در غرب «افیولیت سبزوار» واقع شده است. این منطقه، به‌واسطه وجود معادن کُرومیت، مشهور می‌باشد. یکی از مراحل بسیار مهم در اکتشاف معادن، شناسایی ساختارهای زمین‌شناسی است. در سنگ‌های پریدوتیتی، شناسایی گسل‌ها، در سطوح طبیعی زمین، به‌دلیل کم‌یافت بودن لایه‌های کلیدی، معمولاً مشکل می‌باشد. سونداژزنی مقاومت‌ویژه الکتریکی با استفاده از آرایه مربعی به روش آزیموتی به‌عنوان یک رهیافت ژئوفیزیکی برای شناسایی شکستگی‌ها و مشخص‌کردن جهت آنها در سنگ‌های گسل‌خورده و درزه‌دار به‌کار می‌رود. بررسی‌های زمین‌شناسی در محدوده موردمطالعه نشان می‌دهد که زون‌های شکسته و نیز جهت غالب درزه‌ها و شکستگی‌ها ارتباط مستقیمی با محل کانی‌زایی و جهت‌یافتگی ماده معدنی دارد. از این‌رو در این تحقیق، برای شناسایی ساختار زمین‌شناسی بخشی از محدوده معدنی با تمرکز بر روی شناسایی امتداد غالب شکستگی‌ها، در یک نقطه، روش سونداژزنی مقاومت‌ویژه الکتریکی با استفاده از آرایه مربعی به‌کار گرفته شده است. سنگ بستر محدوده موردمطالعه از پریدوتیت‌های سرپانتینی شده تشکیل شده است. داده‌برداری در سرپانتینیت‌های بدون روباره با استفاده از اندازه‌گیری‌های آرایه مربعی، برای بررسی وجود زون گسلی احتمالی، در یکی از معادن انجام شد. مقاومت‌های‌ویژه ظاهری اندازه‌گیری شده به این روش تغییرات قابل ملاحظه‌ای، در جهت‌های مختلف جغرافیایی، نشان داد. تفسیر نتایج به‌دست‌آمده از آرایه مربعی نشان می‌دهد که وجود گسل در محدوده مطالعه‌شده محتمل نبوده و شبکه درزه‌ها، اصلی‌ترین عوارض ساختمانی حاکم در این محدوده است. شکل نمودارهای مقاومت‌ویژه ظاهری آرایه مربعی، وجود شبکه درزه‌ها را که در چند جهت متفاوت امتداد دارد، تأیید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Joint sets identification and determination of resistivity orientation by analyzing the results of square array azimuthal resistivity, in the west of Sabzevar ophiolite

نویسندگان [English]

  • Ali Reza Shirzadi
  • Reza Ghanati
Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

The study area is located in the NE of Iran, in the NW of “Sabzevar” city, in the west of Sabzevar ophiolite (Upper Cretaceous). Harzburgite, dunite, lherzolite and wehrlite (mostly serpentinized) are the main ultramafic rocks of Sabzevar ophiolite. This area is well-known for the presence of chromite mines. Due to tectonic forces, chromite layers are displaced from their original place by faults in many locations. One of the most important steps in mining exploration of such area is the identification of geological structures. In peridotitic rocks, identification of faults, in the natural topographic surfaces, is usually difficult. Identification of faults can help reveal the correct location of the hidden deposits which in turn, can reduce the costs of mining operations and increase productivity. Azimuthal resistivity sounding (ARS) and square array resistivity methods (SAR) are geoelectrical methods that are widely used to identify the direction of discontinuities in fractured, faulted, and jointed rocks. In this research, one SAR sounding is used in a part of the mining area to identify the local geological structure. Two advantages of the square array, compared to the Schlumberger, is the need for a smaller area and the less dependence of the resistivity to changes in direction. The deployment of the square array requires an area of about 65% of the Schlumberger or Wenner arrays. The bedrock of the location is made of serpentinized peridotites. About 80% of the original peridotitic (or ultramafic) rocks are altered to serpentinites. Using a geoelectric resistivity device, data collection was performed on serpentinites with no overburden. This method was carried out to check the existence of a suspected fault in one of the mines. The apparent resistivities measured by the square array method showed significant changes in different geographical directions. Apparent resistivities were calculated by increasing the length of the side of the square array, in 4 steps, which increases the depth of exploration to the greater depths. Due to the lack of large surfaces in the study area, the deployment of the square array was implemented with spatial limitation (maximum 13.8m). Obviously, by increasing the length of the side of the square array, more accurate information can be obtained from the subsurface conditions. The length of the square sides was set to be 3.5, 4.9, 6.9, 9.8 and 13.8m. With increasing the length of the square side, the apparent resistivity shows a decreasing trend from 270 to 180 to 110 to 65 and to 70 Ω.m. Anisotropy ellipses were drawn for each depth. The ellipses of resistivity are formed distinctly except for the lowest depth which is in the form of a star. According to the anisotropy ellipses, 4 groups of joint sets exist which are in the direction of 30°,67°,120° and 150°. To compare the results of the square array resistivity with another method, the joint sets were measured at the outcrop, using a geological compass. The results are drawn in the form of a rose diagram. The joint sets inferred from the apparent resistivity diagrams are similar to the rose diagram with regard to the number of joint sets and show fairly a good correlation in terms of the direction of the joint sets. The maximum coefficient of anisotropy is estimated to be 2.0. The interpretation of the square array data shows that the existence of a fault, in the studied local area, does not seem to be likely and the joint sets are the main structural feature in this location. Hence it is appropriate to carry out the square array survey in auxiliary points, along with additional studies, including collecting data at the outcrops or, if possible, using other geophysical methods to reach more certain results.

کلیدواژه‌ها [English]

  • Azimuthal
  • Ore exploration
  • Sabzevar ophiolite
  • Square array
Asfahani, J. (2011) Application of a Directional Geoelectrical Resistivity Square Configuration for Anisotropy Estimation in Haramoun Region, Southern Syria. Earth Sci., 22(1), 77-98.
Carlson, C. A., & Gaylord, T. G. (2005). Fracture characterization in crystalline bedrock using square-array resistivity methods, Southeastern Connecticut. Northeastern Geology & Environmental Sciences, 27(4), 317-325.
Carpenter, E. W., & Habberjam, G. M. (1956). A Tri-Potential Method of Resistivity Prospecting. Geophysics, 21(2), 455-469.
Christensen, N. B. (2000). Difficulties in determining electrical anisotropy in subsurface investigations. Geophys. Prospect. 48, 1–19.
Darboux-Afouda, R., & Louis, P. (1989). Contribution des mesures de l’anisotropic electrique la recherche des aquifres de fracture en milieu cristallin au Benin. Geophysical Prospecting, 37, 91-105.
Dilek, Y. (2003). Ophiolite concept and its evolution. Geological Society of America, Special Paper, 373.
Fruh-Green, G. Plas, A., & Lecuyer, C. (1996). Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at hess deep site 895. Proc. Ocean Drill. Program Sci. Results, 747, 255.
Gaylord, T. J., & Carlson, C. A. (2005). Fracture Characterization in Crystalline Bedrock Using Square Array Resistivity Methods, Southeastern Connecticut. Northeastern Geology & Environmental Sciences, 27(4), 317-325.
George, A. M. Okwueze, E. E., & Abong, A. A. (2014). Azimuthal square array resistivity sounding of shallow subsurface fracture distribution in parts of the eastern basement complex of Nigeria. British Journal of Earth Sciences Research, 2(1), 1-18.
Habberjam, G. M. (1972). The Effects of Anisotropy on Square Array Resistivity Measurements. Geophysical Prospecting, 20, 249-266.
Habberjam, G. M. (1979). Apparent Resistivity Observations and the Use of Square Array Techniques. Published by Gebruder Borntraeger, 152.
Habberjam, G. M., & Watkins, G. E. (1967a). The reduction of lateral effects in resistivity probing. Geophysical Prospecting., 16, 221-236.
Habberjam, G. M., & Watkins, G. E. (1967b). The use of a square configuration in resistivity prospecting. Geophys. Prospect. 15, 445–467.
Habberjam, G. M. (1975). Apparent Resistivity, Anisotropy and Strike Measurements. Geophysical Prospecting, 23, 211-247.
Hoek, E. V., & Bray, J. (1972). Rock Slope Engineering. Revised 3rd edition. London: Institution of Mining and Metallurgy, 456.
Keller, G. V., & Frischknecht, F. C. (1966). Electrical Methods in Geophysical Prospecting. Pergamon Press, 527.
Lane Jr. J. W. Haeni, F. P., & Watson, W. M. (1995). Use of a square-array direct-current resistivity method to detect fractures in crystalline bedrock in New Hampshire. Ground Water, 33(3), 476-485.
Latha, G. M., & Garaga, A. (2010). Stability analysis of a rock slope in Himalayas. Geomechanics and Engineering, 2(2), 125-140.
Lench, G. Mihm, A., & Alavi-Tehrani, N. (1977). Petrography and geology of the ophiolite belt north of Sabzrvar/Khorasan (Iran). Neues Jahrbuch fur Geology un Palaontologie Monatshefte, 131, 156-178.
Massoud, U. El Qady. G. Metwaly, M., & Santos, F. (2009). Delineation of Shallow Subsurface Structure by Azimuthal Resistivity Sounding and Joint Inversion of VES-TEM Data: Case Study near Lake Qaroun, El Fayoum, Egypt. Pure and Applied Geophysics, 166, 701–719.
Matias, M. J. (2023). Estimate of Secondary Porosity from Surface Crossed Square Array Resistivity Measurements. Geosciences, 13, 101.
Ravindran, A. (2012). Azimuthal Square Array Configuration and Groundwater Prospecting in Quartzite Terrian at Edaikkal, Ambasamudram, Tirunelveli. Research Journal of Earth Sciences, 4(2), 49-55.
Sener, A. Peksen, E., & Yolcubal, I. (2021). Application of square array configuration and electrical resistivity tomography for characterization of the recharge area of a karst aquifer: A case study from Menekse karst plateau (Kocaeli, Turkey). Journal of Applied Geophysics, 195. 104474.
Taylor, R. W., & Fleming, A. H. (1988). Characterizing jointed systems by azimuthal resistivity surveys. Groundwater, 26, 464–474.
Tiruneh, H. W., Stetler, L. D. Oberling, Z. A. Morrison, D. R. Connolly, J. L., & Ryan, T. M. (2013). Discontinuity mapping using Ground-Based LiDAR: Case study from an open pit mine; ARMA, American Rock Mechanics Association, 13, 663.
Udosen, N. I., & George, N. J. (2018). Characterization of electrical anisotropy in North Yorkshire, England using square arrays and electrical resistivity tomography. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 4, 215-233.
Watson, K. A., and Barker, R. D. (1999). Differentiating anisotropy and lateral effects using azimuthal resistivity offset Wenner soundings. Geophys, 64, 739–745.