استفاده از روش رگرسیون خطی چند متغیره به‌منظور مدل‌سازی دمای تراز دو متر از طریق داده‌های سنجنده مودیس

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نقشه‌بردای، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

چکیده

دمای هوا در نزدیکی سطح زمین، یکی از متغیرهای تأثیرگذار در مطالعات مختلف اقلیمی، هیدرولوژی و پیش‌بینی وضع آب‌وهوا می‌باشد. هدف اصلی این مطالعه ایجاد مدلی مناسب برای برآورد این پارامتر به‌کمک داده‌های LST ماهواره‌ای است. برای این منظور، با استفاده از روش مدل‌سازی خطی چند متغیره، مدلی بین LST سنجنده مودیس و دمای تراز دو متر در منطقه گیلان و مازندران ایجاد شد. پارامترهای مورد استفاده در این مدل شامل LST به‌دست‌آمده از سنجنده مودیس، شاخص نرمال‌شده پوشش‌گیاهی، شیب و انحنا، ساعت و روز از سال می‌باشند. برای برآورد ضرایب مدل از داده‌های جمع‌آوری‌شده بین سال‌های 2000 تا 2017 و به منظور ارزیابی مدل از داده‌های 2018 و 2019 استفاده شد. در هر استان، برای داده‌های شب و روز، و دو دسته ارتفاعی مختلف، مدل‌های مجزا برآورد شد. مقایسه مدل استانی با مدل تک‌ایستگاهی بر حسب آماره‌های خطا نشان داد که مدل استانی اختلاف کمی با مدل ارائه‌شده برای هر ایستگاه دارد. نتایج نشان داد که مقادیر RMSE در مدل استانی به‌طور میانگین در محدوده 60/2 تا 11/3 درجه سانتی‌گراد قرار دارد. ضریب همبستگی دمای تراز دو متر به‌دست‌آمده از مدل با مشاهدات واقعی بیشتر از ۹۰ درصد برآورد شد. علاوه‌بر این، داده‌های فصل‌های مختلف جدا شدند و برای هر فصل مدلی مجزا ارائه شد. به‌طور میانگین بکارگیری مدل فصلی منجر به بهبود برآورد دمای تراز دو متر در استان گیلان و مازندران با RMSE به‌ترتیب 72/2 و 55/2 درجه سانتی‌گراد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using the multivariate linear regression method to model the 2-meter air temperature from MODIS sensor data

نویسندگان [English]

  • Mohammad Amin Mohammadi Ahoei
  • Ali Sam-Khaniani
Department of Surveying Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran.
چکیده [English]

The air temperature near the earth's surface is one of the influential variables in various climate studies, hydrology and weather forecasting. In many areas, this parameter is usually measured with the help of weather stations located on the ground. Due to the lack of uniform spatial distribution of weather stations in areas with the different topography, in many inaccessible or unpopulated places, enough ground stations are not available to observe and record surface air temperature data. On the other hand, remote sensing satellite images are used as a potential alternative to describe temperature patterns with appropriate spatial details in large areas. Land Surface Temperature (LST) is prepared with the help of satellite observations. Although the LST product is related to the temperature of the air near surface (T2m), they have different behavior and characteristics. Therefore, many researchers, in order to overcome the limitation of ground-based air temperature data spatial resolution, try to establish a relationship between near surface air temperature and satellite LST.
The provinces along the Caspian Sea, such as Gilan and Mazandaran, are very important from various climatic, economic and agricultural aspects. Due to the vastness and diverse topography of these areas, the number of synoptic stations available in these areas is limited. On the other hand, so far, 2m air temperature modeling using satellite data has not been done in this region.
The main goal of this study is to create a suitable model for estimating this parameter using satellite LST data. For this purpose, using multivariate linear modeling method, a model was created between MODIS sensor LST and T2m air temperature in Gilan and Mazandaran region. The parameters used in this model include LST obtained from MODIS sensor, height, Normalized Vegetation Index (NDVI), slope and curvature. The data collected between 2000 and 2017 were used to estimate the coefficients of the model, and the data from 2018 to 2020 were used to evaluate the model. In each province, separate models were estimated for night and day data and two different height categories. The comparison of the provincial model with the single-station model in terms of error statistics showed that the provincial model has little difference with the model constructed for each station. The results showed that the RMSE values in the provincial model are on average in the range of 2.60-3.11 degrees Celsius. The correlation coefficient of the T2m values obtained from the model with real observations was estimated to be more than 90%. In addition, the data of different seasons were separated and a separate model was presented for each season. On average, the use of the seasonal model led to an improvement in the estimation of T2m data in Gilan and Mazandaran provinces with RMSE of 2.72 and 2.55 degrees Celsius, respectively.

کلیدواژه‌ها [English]

  • LST
  • T2m
  • MODIS
  • MLR model
Allison, E. W., Brown, R. J., Press, H. E., & Gairns, J. G. (1989). Monitoring Drought Affected Vegetation With Avhrr. 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, 4, 1965–1967. https://doi.org/10.1109/IGARSS.1989.577746
Benali, A., Carvalho, A. C., Nunes, J. P., Carvalhais, N., & Santos, A. (2012). Estimating air surface temperature in Portugal using MODIS LST data. Remote Sensing of Environment, 124, 108–121. https://doi.org/10.1016/j.rse.2012.04.024
Binesh Barahmand, M., Nabizadeh, R., Nadafi, K., & Medzaghi nia, A. (2012). Qualitative Analysis of Coastal Waters in the Caspian Sea in Guilan Province: Determining the Environmental Health Indicators in Swimming Areas. Journal of Mazandaran University of Medical Sciences, 22(88), 41–52.
Bunker, A., Wildenhain, J., Vandenbergh, A., Henschke, N., Rocklöv, J., Hajat, S., & Sauerborn, R. (2016). Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence. EBioMedicine, 6, 258–268. https://doi.org/10.1016/j.ebiom.2016.02.034
Che, J., Ding, M., Zhang, Q., Wang, Y., Sun, W., Wang, Y., Wang, L., & Huai, B. (2022). Reconstruction of Near-Surface Air Temperature over the Greenland Ice Sheet Based on MODIS Data and Machine Learning Approaches. Remote Sensing, 14(22), 5775. https://doi.org/10.3390/rs14225775
Deser, C., Terray, L., & Phillips, A. S. (2016). Forced and Internal Components of Winter Air Temperature Trends over North America during the past 50 Years: Mechanisms and Implications. Journal of Climate, 29(6), 2237–2258. https://doi.org/10.1175/JCLI-D-15-0304.1
Didari, S., Norouzi, H., Zand-Parsa, S., & Khanbilvardi, R. (2017). Estimation of daily minimum land surface air temperature using MODIS data in southern Iran. Theoretical and Applied Climatology, 130(3–4), 1149–1161. https://doi.org/10.1007/s00704-016-1945-0
Dinpashoh, Y., Singh, V. P., Biazar, S. M., & Kavehkar, S. (2019). Impact of climate change on streamflow timing (case study: Guilan Province). Theoretical and Applied Climatology, 138(1), 65–76. https://doi.org/10.1007/s00704-019-02810-2
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F.-M., & Trigo, I. F. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing, 12(9), Article 9. https://doi.org/10.3390/rs12091471
Gázquez, F., Calaforra, J. M., & Fernández-Cortés, Á. (2016). Flash flood events recorded by air temperature changes in caves: A case study in Covadura Cave (SE Spain). Journal of Hydrology, 541, 136–145. https://doi.org/10.1016/j.jhydrol.2015.10.059
Gholamnia, M., Alavipanah, S. K., Darvishi Boloorani, A., Hamzeh, S., & Kiavarz, M. (2017). Diurnal Air Temperature Modeling Based on the Land Surface Temperature. Remote Sensing, 9(9), 915. https://doi.org/10.3390/rs9090915
Isazadeh, M., Biazar, S., & Ashrafzadeh, A. (2017). Support vector machines and feed-forward neural networks for spatial modeling of groundwater qualitative parameters. Environmental Earth Sciences, 76. https://doi.org/10.1007/s12665-017-6938-5
Kashki, A., Karami, M., Zandi, R., & Roki, Z. (2021). Evaluation of the effect of geographical parameters on the formation of the land surface temperature by applying OLS and GWR, A case study Shiraz City, Iran. Urban Climate, 37, 100832. https://doi.org/10.1016/j.uclim.2021.100832
Khandan, R., Gholamnia, M., Duan, S.-B., Ghadimi, M., & Alavipanah, S. K. (2018). Characterization of maximum land surface temperatures in 16 years from MODIS in Iran. Environmental Earth Sciences, 77(12), 450. https://doi.org/10.1007/s12665-018-7623-z
Kuhn, K. G., Campbell-Lendrum, D. H., & Davies, C. R. (2002). A continental risk map for malaria mosquito (Diptera: Culicidae) vectors in Europe. Journal of Medical Entomology, 39(4), 621–630. https://doi.org/10.1603/0022-2585-39.4.621
Lin, S., Moore, N., Messina, J., DeVisser, M., & Wu, J. (2012). Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. International Journal of Applied Earth Observation and Geoinformation, 18, 128–140. https://doi.org/10.1016/j.jag.2012.01.004
Mostovoy, G., King, R., Reddy, K., Kakani, V., & Filippova, M. (2006). Statistical Estimation of Daily Maximum and Minimum Air Temperatures from MODIS LST Data over the State of Mississippi. GIScience & Remote Sensing, 43, 78–110. https://doi.org/10.2747/1548-1603.43.1.78
Parton, W. J., & Logan, J. A. (1981). A model for diurnal variation in soil and air temperature. Agricultural Meteorology, 23, 205–216. https://doi.org/10.1016/0002-1571(81)90105-9
Qorbani, samira, Shaygan, M., J karami, J., & Ghasempouri, S. M. (2022). Spatial prioritization of protected areas using Annealing simulation algorithm (Study area: Mazandaran province). Mdrsjrns, 26(3), 152–183. https://doi.org/10.2022/hsmsp.26.3.7.
Shahbazi, A., & Esmaeili-Sari, A. (2009). Groundwater Quality Assessment in North of Iran: A Case Study of the Mazandaran Province.
Slini, T., & Papakostas, K. (2016). 30 Years Air Temperature Data Analysis in Athens and Thessaloniki, Greece. In Green Energy and Technology (pp. 21–33). https://doi.org/10.1007/978-3-319-30127-3_3
Uyanık, G. K., & Güler, N. (2013). A Study on Multiple Linear Regression Analysis. Procedia-Social and Behavioral Sciences, 106, 234–240. https://doi.org/10.1016/j.sbspro.2013.12.027
Vaez, A., & Mokhtarzade, M. (2015). Estimation of surface air temperature using LST data of MODIS sensor. https://doi.org/10.13140/RG.2.1.3751.3125.
Wan, Z. (2006). MODIS land surface temperature products users’ guide. Institute for Computational Earth System Science, University of California: Santa Barbara, CA, USA, 805. https://lpdaac.usgs.gov/documents/447/MOD11_User_Guide_V4.pdf
Wang, L., Hui, F., & Suo, F. (2022). Usage and Analysis of Interpolation Methods in Time Series Forecasting. Software development and application,13-15.
Wang, N., Tian, J., Su, S., & Tian, Q. (2023). A Downscaling Method Based on MODIS Product for Hourly ERA5 Reanalysis of Land Surface Temperature. Remote Sensing, 15(18), 4441.‏
Willmott, C., & Robeson, S. (1995). Climatologically Aided Interpolation (CAI) of Terrestrial Air Temperature. International Journal of Climatology, 15, 221–229. https://doi.org/10.1002/joc.3370150207
Yang, Y., Cai, W., & Yang, J. (2017). Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China. Remote Sensing, 9(5), 410. https://doi.org/10.3390/rs9050410
Yoo, C., Im, J., Park, S., & Quackenbush, L. J. (2018). Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. ISPRS Journal of Photogrammetry and Remote Sensing, 137, 149–162. https://doi.org/10.1016/j.isprsjprs.2018.01.018
Zeng, L., Wardlow, B., Tadesse, T., Shan, J., Hayes, M., Li, D., & Xiang, D. (2015). Estimation of Daily Air Temperature Based on MODIS Land Surface Temperature Products over the Corn Belt in the US. Remote Sensing, 7(1), 951–970. https://doi.org/10.3390/rs70100951
Zhu, W., Lű, A., & Jia, S. (2013). Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sensing of Environment, 130, 62–73. https://doi.org/10.1016/j.rse.2012.10.034.