رابطه بین میدان‌های فشار و دمای سطحی بر روی ایران: رویکردی بر مبنای چند مقیاس زمانی و بر اساس داده‌های بازتحلیل NCEP/NCAR

نوع مقاله : مقاله پژوهشی

نویسنده

گروه فیزیک، دانشکده علوم، دانشگاه رازی، کرمانشاه، ایران.

چکیده

در این تحقیق با استفاده از سری‌های زمانی داده‌های ماهانه بازتحلیل، ارتباط آماری کمیت‌های دما و فشار سطحی بر روی ایران مورد بررسی قرار گرفته است. با اعمال پالایه‌های رقومی بر داده‌ها، تغییرپذیری‌های زمانی در سری‌های زمانی فشار و دما و همچنین ارتباط احتمالی آنها مورد بررسی قرار گرفت. نتایج نشان می‌دهند که چرخه فصلی ناشی از گردش زمین به دور خورشید تأثیر بسزایی نسبت به مؤلفه‌های بسامدی دیگر بر الگوی همبستگی بین داده‌های خام دما و فشار دارد. برای تغییرپذیری‌های درون‌سالی، همبستگی منفی با اهمیت در شمال‌شرق در تأخیر زمانی صفر و همبستگی مثبت قابل‌توجه در جنوب‌شرق در تأخیر زمانی 6 ماهه آشکارسازی شد. این همبستگی‌های با اهمیت گویای واداشت اقلیمی یکسان بر تغییرات پُر بسامد سری‌های زمانی دما و فشار بر روی ایران هستند که می‌تواند به‌طور همزمان یا با تأخیر فاز زمانی در مناطق مختلف عمل کند. تأثیر مؤلفه تغییرپذیری کم بسامد داده‌های فشار بر داده‌های دما نسبت به اثرات مؤلفه‌های بسامدی درون‌سالانه و سالانه در تأخیر زمانی صفر نسبتاً کم است و تنها در تأخیرهای زمانی بزرگ در بخش وسیعی از پهنه کشور اثر خود را در افزایش ضریب همبستگی نشان می‌دهد. نمودارهای پراکنش و مدل‌سازی وایازشی برای ایستگاه‌های انتخابی و برای مقیاس‌های مختلف شامل در دو سری زمانی الگوهای منحصر به فرد آماری برای روابط بین فشار و دما را نمایش می‌دهند، به‌طوری که این الگوها وابسته به عرض جغرافیایی تغییر می‌کنند و برای ایستگاه‌های مجاورِ هم می‌توانند کاملاً مشابه باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The relationship between surface pressure and temperature fields over Iran: An approach based on multiple time-scales analysis of NCEP/NCAR reanalysis data

نویسنده [English]

  • Abolfazl Neyestani
Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran.
چکیده [English]

Surface temperature and pressure are significant atmospheric parameters that, along with humidity and precipitation, can be regarded as the most effective quantities in determining the global and regional climate in small and large spatial scales. This importance stems from the fact that they can affect the dynamic elements of the weather. Surface air temperature (ST), as a crucial element of climate, is widely used in studies related to meteorology, climate change, energy and the environment and its changes (especially due to global warming) have a substantial impact on health, human well-being, and the environment. On the other hand, atmospheric pressure plays a vital role in determining the exact weather conditions and the climate of a specific location on Earth, and it is closely related to wind patterns and the formation of weather systems. Furthermore, the effects of heating and cooling in the atmosphere can depend on the level of atmospheric pressure.
To improve our ability to gain a clear understanding of the mutual coupling between temperature and pressure changes on intra-annual to inter-decadal scales, research is required to describe the possible relationship between these quantities from different points of view. This relationship can be complex on some time scales. Hence, in the current research, with using time series of monthly reanalysis data, the relationship between surface temperature and pressure at sea level has been investigated in different time scales over Iran. Based on the analysis of the linear trend of the raw data in the statistical period of 1948-2020, a tendency of increasing temperature and surface pressure was observed in all regions of Iran. The highest increase in temperature has occurred in the north-east (1.6 °C to 1.8 °C), and the lowest increase in temperature has been found in the extreme northwest of Iran (0.4 °C to 0.6 °C), which can be attributed to the effects of global warming. In addition, the highest increase in pressure (more than 4.5 hPa) was observed in the extreme northwest of the country, and the lowest increase in pressure (less than 1.5 hPa) was found in the southern coast of the country. Based on correlation and regression analyses, the inter-relationships between pressure and temperature were investigated for the raw data as well as the filtered data (in different time scales). The results demonstrate that the annual component has a large impact on the correlation pattern between the raw temperature and pressure data. A phase difference of 5-6 months was observed between the common annual periodic component of the temperature and pressure. For the intra-annual components, there is a negative correlation (-0.5 to -0.6) in the northeast at the lag = 0 and in the southeast at the lag = 3 months. In addition, the highest positive correlation (+0.5 to +0.6) was revealed in the lag = 6 months in the southeast of Iran. For the inter-annual plus inter-decadal components of the temperature and pressure at the lag of zero, the highest negative correlation coefficient (-0.3 to -0.4) was observed in the east and northeast of Iran. In larger time lags, the correlation coefficient gradually becomes positive, which reaches more than +0.4 in a large part of the country at the lag = 200 months. Therefore, with a phase (time) difference of several years (2 to 16 years), the correlation pattern tends to increase over a large area of Iran, which in turn indicates the presence of common inter-decadal quasi-periodic components (but with a specific phase difference) in the time series of surface pressure and temperature. Scatter plots and regression modeling for the selected stations and for different scales included in the time series display unique patterns for the relationship between the pressure and temperature so that these patterns can change over Iran depending on the latitude of the selected station.

کلیدواژه‌ها [English]

  • Sea level pressure
  • Surface temperature
  • Digital filter
  • Multi-scale
  • Iran
ستوده، ف. و علیجانی، ب. (1394). رابطه­ی پراکندگی فضایی بارش­های سنگین و الگوهای فشار در گیلان، نشریه تحلیل فضایی مخاطرات محیطی، 2(1)، 63-73.
علیجانی، ب.؛ محمدی، ح. و بیگدلی، آ. (1386). نقش الگوهای فشار در بارش سواحل جنوبی دریای خزر. فصلنامه جغرافیایی سرزمین، 4 (16)، 37-52.
علیزاده چوبری، ا. و نجفی، م. س. (1396). روند تغییرات دمای هوا و بارش در مناطق مختلف ایران. مجله فیزیک زمین و فضا، 43(3)، 569-584.
نیستانی، ا. (1401). طراحی و کاربرد عملی پالایه­های رقمی در پردازش سیگنال­های هواشناسی. مجله فیزیک زمین و فضا، 48(2)، 361-380.
Aleshina, M. A., Semenov, V. A., & Chernokulsky, A. V. (2021). A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data. Environ. Res. Lett., 16, 105004.
Borgnakke, C., & Sonntag, R. (2013). Fundamentals of Thermodynamics, 8th Edition, Wilely, 912 pp.
Chatfield, C. (2003). The Analysis of Time Series-An Introduction. 6th Edition, Chapman and Hall CRC, London, 352 pp.
Casagrande, E., Mueller, B., Miralles, D. G., Entekhabi, D., & Molini, A. (2015). Wavelet correlations to reveal multiscale coupling in geophysical systems. J. Geophys. Res. Atmos., 120, 7555–7572.
Darand, M. (2020). Spatiotemporal analysis of the relationship between near‐surface air temperature and troposphere thickness over Iran. Meteorol Appl, 27(2), e1907, 1–13.
Darand, M., & Pazhoh, F. (2019). Synoptic analysis of sea level pressure patterns and Vertically Integrated Moisture Flux Convergence VIMFC during the occurrence of durable and pervasive rainfall in Iran. Dynamics of Atmospheres and Oceans, 86, 10-17.
Davis, R. E. (1976). Predictability of Sea Surface Temperature and Sea Level Pressure Anomalies over the North Pacific Ocean. Journal of Physical Oceanography, 6(3), 249-266.
Duchon, C. E. (1979). Lanczos filtering in one and two dimensions. J. Appl. Meteor. Climatol., 18, 1016–1022.
El Kenawy, A. M., Lopez-Moreno, J. I., McCabe, M. F., Robaa, S. M., Domínguez-Castro, F., Peña-Gallardo, M., Trigo, R. M., Hereher, M. E., Al-Awadhi, T., & Vicente-Serrano, S. M. (2019). Daily temperature extremes over Egypt: Spatial patterns, temporal trends, and driving forces. Atmospheric Research, 226, 219-239.
Han, J., Pei, J., & Tong, H. (2023). Data Mining: Concepts and Techniques. 4th Edition, Elsevier Inc, 752 pp.
Haworth, C. (1978). Some relationships between sea surface temperature anomalies and surface pressure nomalies. Q. J. R. Meteorol. Soc., 104, 131–146.
Haylock, M. R., Jones, P. D., Allan, R. J., & Ansell, T. J. (2007). Decadal changes in 1870–2004 Northern Hemisphere winter sea level pressure variability and its relationship with surface temperature. J. Geophys. Res., 112, D11103.
Kawai, Y., Tomita, H., Cronin, M. F., & Bond, N. A. (2014). Atmospheric pressure response to mesoscale sea surface temperature variations in the Kuroshio extension region: in situ evidence. Journal of Geophysical Research: Atmospheres, 119, 8015-8031.
Li, H., Choy, S., Zaminpardaz, S., Carter, B., Sun, Ch., Purwar, S., Liang, H., Li, L., & Wang, X. (2023). Investigating the Inter-Relationships among Multiple Atmospheric Variables and Their Responses to Precipitation. Atmosphere, 14, 571.
Mitchell, J. M. (1976). An overview of climatic variability and its causal mechanisms. Quat. Res., 6, 481–493.
Neyestani, A., Karami, Kh., & Gholami, S. (2022). Exploring the possible linkage between the precipitation and temperature over Iran and their association with the large-scale circulations: Cumulative spectral power and wavelet coherence approaches. Atmoshric Research, 274, 106187.
O’Gorman, P. A. (2015). Precipitation extremes under climate change. Curr. Clim. Chang. Rep., 1, 49–59.
Otero, N., Rust, H. W., & Butler, T. (2021). Temperature dependence of tropospheric ozone under NOx reductions over Germany. Atmospheric Environment, 253, 118334.
Privalsky, V. (2021). Time Series Analysis in Climatology and Related Sciences. Springer Nature Switzerland, 245 pp.
Salstein, D. A., Ponte, R. M., & Cady-Pereira, K. (2008). Uncertainties in atmospheric surface pressure fields from global analyses. J. Geophys. Res., 113: D14107.
Singh, R., Jaiswal, N., & Kishtawal, C.M. (2022). Rising surface pressure over Tibetan Plateau strengthens indian summer monsoon rainfall over northwestern India. Sci Rep, 12, 8621.
Song, F., Zhang, G. J., Ramanathan, V., & Leung, L. R. (2022). Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA, 119, e2117832119.
Sun, N., Zhong, L., Zhao, Ch., Ma, M., & Fu, Y. (2022). Temperature, water vapor and tropopause characteristics over the Tibetan Plateau in summer based on the COSMIC, ERA-5 and IGRA datasets. Atmospheric Research, 266, 105955.
Thomson, R. E., & Emery, W. J. (2014). Data Analysis Methods in Physical Oceanography,3th edition. Elsevier Science.
Trenberth, K. E., & Shea, D. J. (2005). Relationships between precipitation and surface temperature. Geophys. Res. Lett., 32(14), L14703.
Von der Heydt, A. S., Ashwin, p., Camp, C. D., Crucifix, M., Dijkstra, H. A., Ditlevsen, P., & Lenton, T. M. (2021). Quantification and interpretation of the climate variability record. Glob. Planet. Change., 197, 1-20.
Wilks, D. S. (2019). Statistical Methods in the Atmospheric Sciences, 4th Edition, Elsevier Inc, 818 pp.
Wu, G. C., Zhang, C. W., Zhao, R. Z., Qin, P. Y., & Qin, Y. Y. (2023). Asymmetries of the lag between air temperature and insolation in gauge observations and reanalyses over China. Atmosheric Research, 288, 106729.
Wu, R., Chen, J., & Wen, Z. (2013). Precipitation-surface temperature relationship in the IPCC CMIP5 models. Adv. Atmos. Sci., 30, 766–778.
Yin, C., Yang, Y., Chen, X., Yue, X., Liu, Y., & Xin, Y. (2023). Global near real-time daily apparent temperature and heat wave dataset. Geosci. Data J., 10, 231–245.
You, Q., Jiang, Z., Moore, G. W. K., Bao, Y., Kong, L., & Kang, S. (2017). Revisiting the relationship between observed warming and surface pressure in the Tibetan Plateau. J. Climate, 30, 1721–1737.
Zhang, Y., Zhang, X., Fan, X., Ni, Ch., Sun, Zh., Wang, Sh., Fan, J., & Zheng, C. (2020). Modifying effects of temperature on human mortality related to black carbon particulates in Beijing, China. Atmospheric Environment, 243, 117845.