استفاده از جفت‌سازی کاپیولای همادی برای پس‌پردازش پیش‌بینی همادی چند متغیره

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشگاه هواشناسی و علوم جو، تهران، ایران.

چکیده

پیش‌بینی‌های همادی اغلب دارای اریبی و خطاهای پراکندگی هستند و بنابراین باید از نظر آماری پس‌پردازش شوند. با این‌حال، رویکردهای پس‌پردازش همادی تک‌متغیره مانند EMOS و BMA برای یک کمیت، در یک مکان واحد و فقط برای یک افق پیش‌بینی معین اعمال می‌شوند و در نتیجه ساختارهای وابستگی مکانی، زمان و بین متغیری را در نظر نمی‌گیرند. برای لحاظ‌کردن این وابستگی‌ها، روش‌های پس‌پردازش همادی چند متغیره مانند روش جفت‌سازی کاپیولای همادی (ECC) پیشنهاد شده‌اند. روش ECC، شامل دو مرحله است؛ در مرحله اول پس‌پردازش همادی تک‌متغیره در همه ابعاد به‌صورت مستقل انجام می‌شود و در مرحله دوم، وابستگی‌های چندمتغیره با مرتب‌کردن مقادیر نمونه‌های تک‌متغیره با توجه به ساختار ترتیب رتبه‌بندی یک الگوی وابستگی بازیابی می‌شود. در مقاله حاضر، عملکرد روش ECC با روش EMOS مقایسه شده است. برای این منظور، از سامانه همادی 51 عضوی ECMWF در بازه زمانی 1 ژانویه 2018 تا 31 دسامبر 2023 برای لحاظ‌کردن وابستگی مکانی پیش‌بینی دمای 48‌ساعته دمای دو متری در دو ایستگاه مهرآباد و کرج استفاده شده است. نتایج نشان دادند که هر دو روش پس‌پردازش، پیش‌بینی خام را تا 81% بهبود دادند اما با اعمال روش ECC، علاوه بر این که اریبی پیش‌بینی همادی خام از بین رفت، بلکه ساختار وابستگی بین اعضای همادی نیز حفظ شد. در حالی که در روش EMOS، فقط اریبی‌ها از بین رفتند بدون این‌که وابستگی بین اعضای همادی در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using ensemble copula coupling for multivariate post-processing of ensemble prediction

نویسندگان [English]

  • Seyedeh Atefeh Mohammadi
  • Majid Azadi
Research Institute of Meteorology and Atmospheric Science (RIMAS), Tehran, Iran.
چکیده [English]

In many cases, ensemble weather forecasts produced by numerical weather prediction (NWP) models exhibit systematic bias and under-dispersion. Over the past two decades, various ensemble post-processing approaches have been developed to address this issue. These approaches include classical methods such as ensemble model output statistics (EMOS), Bayesian model averaging (BMA), and advanced machine learning-based approaches.
In most ensemble post-processing approaches, it is implicitly assumed that there is statistical independence between different forecast margins, such as lead time, location, and meteorological variables. However, this assumption is not valid for realistic forecast application scenarios. End users may be interested in scenarios such as total hydrological basin precipitation, temporal evolution of precipitation, or the interaction of precipitation and temperature, especially when temperatures are close to zero degrees Celsius. Important examples include hydrological applications, air traffic management, and energy forecasting. Such dependencies exist in raw ensemble forecasts, but these dependencies are ignored if standard univariate post-processing methods are applied separately to each margin.
In recent years, various multivariate post-processing methods have been proposed. These methods can be categorized into two approaches. The goal of the first approach is to directly model the joint distribution by fitting a specific multivariate probability distribution. This approach is mainly used in low-dimensional problems or when a specific structure is chosen for the application at hand. For example, multivariate models for temperature across space, for wind vectors, and joint models for temperature and wind speed.
The second approach is a two-step approach. In the first step, univariate post-processing methods are applied independently to all dimensions, and samples are generated from the resulting probability distributions. In the second step, the multivariate dependencies are recovered by reordering the univariate sample values according to the ranking order structure of a specific multivariate dependence pattern. Mathematically, this is equivalent to using a copula (parametric or nonparametric). Examples include ensemble copula coupling (ECC), Schaake Shuffle, and the Gaussian copula approach.
This paper presents multivariate ensemble post-processing of temperature, two meter above ground using the ECC approach. The EMOS method is used for univariate post-processing. The performance of the raw ensemble, EMOS post-processed ensemble, and ECC systems is evaluated using energy score (ES) and variogram score (VS). The ECMWF 51-member ensemble system is used as raw data for the period from January 1, 2018 to December 31, 2023.
The results showed that in addition to eliminating the bias of the raw ensemble forecast, the ECC method also preserved the dependence structure between the ensemble members. In contrast, the EMOS method only eliminated the biases without considering the dependence between the ensemble members. Because of its ability to preserve the dependence structure, the ECC method was able to achieve significantly better results than the EMOS method on a variety of metrics, including energy scores and variogram score. This suggests that the ECC method is a valuable tool for ensemble post-processing, and that it should be considered for a wide range of applications.

کلیدواژه‌ها [English]

  • Copula
  • Ensemble prediction
  • Multivariate post-processing
قادر، س.؛ یازجی، د.؛ سلطان‌پور، م. و نعمتی، م. ح. (1394). به کارگیری یک سامانه همادی توسعه داده‌شده برای مدل WRF جهت پیش بینی میدان باد سطحی در محدوده خلیج فارس. هیدروفیزیک، 1(1)، 41-54.
مرادیان، ف.؛ قادر، س. و رضازاده، م. (1399). بررسی عملکرد سامانه همادی چند فیزیکی مدل میان مقیاس WRF جهت شبیه سازی بارش در مناطق مرکزی ایران. مجله ژئوفیزیک ایران، 14(1)، 18-38.
آزادی، م. و محمدی، س. ع. (1398). پیش­بینی احتمالاتی دماهای کمینه و بیشینه روزانه برای ایران با استفاده از سامانه همادی دو عضوی. نیوار، 43، 57-66.
ده‌ملائی، م.؛ رضازاده، م. و آزادی، م. (1400). بررسی پیش‌بینی‌ احتمالاتی سرعت باد ده متری با استفاده از دو روش پس‌پردازش همادی. پژوهش­های اقلیم شناسی، 48، 69-84..
فتحی، م.؛ آزادی، م.؛ کمالی، غ. ع. و مشکوتی، ا. ح. (1397). واسنجی پیش‌بینی احتمالاتی بارش برونداد سامانه همادی به روش میانگین‌گیری بایزی روی ایران. نشریه هواشناسی و علوم جو، 1(2)، 114-129.
محمدی، س. ع. و آزادی، م. (1401). بررسی تأثیر تعداد اعضای یک سامانه همادی بر دقت پیش بینی بارش. نیوار، 46، 73-84.
Baran, S., & Möller, A. (2015). Joint probabilistic forecasting of wind speed and temperature using Bayesian model averaging. Environmetrics, 26, 120–132.
Baran, S., & Möller, A. (2017). Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature. Meteorol. Atmos. Phys., 129, 99–112.
Buizza, R. (2018). Ensemble forecasting and the need for calibration. In Vannitsem, S., Wilks, D. S., & Messner J. W., (Eds.), Statistical Postprocessing of Ensemble Forecasts. Elsevier.
Chaloulos, G., & Lygeros, J. (2007). Effect of wind correlation on aircraft conflict probability. J. Guid. Control Dynam., 30, 1742–1752.
Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., & Wilby, R. (2004). The Schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeorol., 5, 243–262.
Feldmann, K., Scheuerer, M., & Thorarinsdottir, T. L. (2015). Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous Gaussian regression. Mon. Weather Rev., 143, 955–971.
Gneiting, T. (2014). Calibration of medium-range weather forecasts. ECMWF Technical Memorandum No. 719. Available at: http://www.ecmwf.int/sites/default/files/elibrary/2014/9607-calibration-medium-range [Accessed on 20 June 2022]
Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc., Ser. B 69: 243–268.
Gneiting, T. & Raftery, A. E. (2007). Strictly proper scoring rules, prediction and estimation. J. Amer. Statist. Assoc. 102, 359–378.
Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev., 133, 1098–1118.
Gneiting, T., Stanberry, L. I., Grimit, E. P., Held, L., & Johnson, N. A. (2008). Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds (with discussion and rejoinder). Test, 17, 211–264.
Gupta, H. (1974). On permutation cubes and Latin cubes. Indian Journal of Pure and Applied Mathematics, 5, 1003–1021.
Lakatos, M., Lerch, S., Hemri, S. & Baran, S. (2023). Comparison of multivariate post-processing methods using global ECMWF ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 149(752), 856–877.
Lang, M. N., Mayr, G. J., Stauffer, R., & Zeileis, A. (2019). Bivariate Gaussian models for wind vectors in a distributional regression framework. Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132.
Mohammadi, S. A., Rahmani, M., & Azadi, M. (2016). Meta-heuristic CRPS minimization for the calibration of short range probabilistic forecasts. Meteorology and Atmospheric Physics, 128, 429–440.
Möller, A., Lenkoski, A., & Thorarinsdottir, T. L. (2013). Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Q. J. Roy. Meteor. Soc., 139, 982–991.
Pinson, P., & Tastu, J. (2013). Discrimination ability of the Energy score, Technical Report DTU Compute-Technical Report-2013 No. 15. Technical University of Denmark: Kgs Lyngby, Denmark.
Pinson, P., & Messner, J. W. (2018). Application of postprocessing for renewable energy, in: Statistical Postprocessing of Ensemble Forecasts, edited by: Vannitsem, S., Wilks, D. S., and Messner, J. W., 241–266, Elsevier.
Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev., 133, 1155–1174.
Rasp, S., & Lerch, S. (2018). Neural networks for postprocessing ensemble weather forecasts. Mon. Weather Rev., 146, 3885–3900.
Schefzik, R. (2015). Multivariate discrete copulas, with applications in probabilistic weather forecasting. Heidelberger Institut für Theoretische Studien.
Schefzik, R. (2017). Ensemble calibration with preserved correlations: unifying and comparing ensemble copula coupling and member-by-member postprocessing. Quarterly Journal of the Royal Meteorological Society, 143, 999–1008.
Schefzik, R., & Möller, A. (2018). Ensemble postprocessing methods incorporating dependence structures, in: Statistical Postprocessing of Ensemble Forecasts, edited by: Vannitsem, S., Wilks, D. S., and Messner, J. W., 91–125, Elsevier.
Schefzik, R., Thorarinsdottir, T. L., & Gneiting, T. (2013). Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci., 28, 616–640.
Scheuerer, M., & Hamill, T. M. (2015). Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Weather Rev., 143, 1321–1334.
Scheuerer, M., Hamill, T. M., Whitin, B., He, M., & Henkel, A. (2017). A method for preferential selection of dates in the Schaake shuffle approach to constructing spatio-temporal forecast fields of temperature and precipitation. Water Resour. Res., 53, 3029–3046.
Schulz, B., & Lerch, S. (2022). Machine learning methods for postprocessing ensemble forecasts of wind gusts: A systematic comparison. Mon. Weather Rev.,150, 235–257.
Schuhen, N., Thorarinsdottir, T. L., & Gneiting, T. (2012). Ensemble model output statistics for wind vectors. Mon.Weather Rev., 140, 3204–3219.
Sklar, A. (1959). Fonctions de r_epartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Universit_e de Paris, 8, 229–231.
Taillardat, M. (2021). Skewed and mixture of Gaussian distributions for ensemble postprocessing. Atmosphere, 12, 966.
Vannitsem, S., Bremnes, J. B., Demaeyer, J., Evans, G. R., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S., Atencia, A., Ben Boual`egue, Z., Bhend, J., Dabernig, M., De Cruz, L., Hieta, L., Mestre, O., Moret, L., Odak Plenkoviˇc, I., Schmeits, M., Taillardat, M., Van den Bergh, J., Van Schaeybroeck, B., Whan, K. and Ylhaisi, J. (2021). Statistical postprocessing for weather forecasts – review, challenges and avenues in a big data world. Bull. Amer. Meteorol. Soc. 102, E681–E699.Top of Form
Wilks, D.S. (2019). Statistical methods in the atmospheric sciences. 4th edition. Amsterdam: Elsevier.