کاربست مدل WRF در شبیه‌سازی عمق برف در نیمه شمالی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

هدف اصلی پژوهش حاضر، ارزیابی عملکرد مدل پیش­بینی و تحقیق وضع هوا (WRF) در شبیه­سازی مکانی و زمانی عمق برف در نیمه شمالی ایران برای یک مطالعه موردی برف شدید است. برای اجرای مدل، نیمه شمالی کشور به سه ناحیه جداگانه شامل شمال، شمال شرق و شمال غرب تقسیم شد. برای هر سه ناحیه، شبیه‌سازی مدل WRF به‌مدت ۴۸ ساعت برای رخداد برف انتخابی (3 تا 5 فوریه ۲۰۱۲) با استفاده از داده­های ERA5 انجام شد. برای انتخاب بهترین پیکربندی فیزیک مدل برای هر ناحیه، پیکربندی­های مختلف مورد آزمایش قرار گرفت. پیکربندی بهینه شامل طرحواره پارامترسازی همرفت Tiedtke برای نواحی شمال و شمال شرق وOSAS  در ناحیه شمال غرب، طرحواره پارامترسازی لایه مرزی/سطحی QNSE/QNSE در نواحی شمال و شمال غرب وYSU/MM5  در ناحیه شمال شرق، طرحواره‌های پارامترسازی تابش طول‎موج بلند و کوتاهNew Goddard  وDudhia ، طرحواره پارامترسازی خردفیزیک WSM-3 و طرحواره پارامترسازی سطحNOAH-MP  در هر سه ناحیه است. نتایج نشان داد که خطایRMSE  برای تمامی ایستگاه‌ها در شمال غرب کمتر از 018/0 متر است که نسبت به دو ناحیه شمال و شمال شرق باRMSE  به­ترتیب برابر 195/0 و 143/0 متر، کمتر است. نتایج بررسی در هر ناحیه بیانگر آن است که مدل در ناحیه شمال، در مقادیر کمترِ عمق‌برف عملکرد بهتری دارد و در شمال شرق، در ایستگاه­های با ارتفاع کمتر نتایج مدل دقیق‌تر است. در دو ناحیه شمال و شمال شرق، مدل در بیشتر ایستگاه‌ها مقدار عمق برف را فراتخمین کرده است ولی در ناحیه شمال‌غرب، مدل مقدار عمق برف را فروتخمین کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of the WRF model in simulating snow depth in the northern part of Iran

نویسندگان [English]

  • Maryam Nasiri Darabi
  • Maryam Gharaylou
  • S. Samaneh Sabetghadam
Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

Snow depth modeling serves several purposes, including weather prediction, water storage estimation, flood forecasting, and assessing energy production potential. The WRF model is commonly used for snow depth simulation. The studied area is the northern part of Iran. For a more detailed investigation and to eliminate the effects of land-sea interaction on the implementation of the WRF model, the northern part of Iran was divided into three separate regions. It should be noted that the results obtained from this research are evaluated separately for each area. These three regions include northeast, north and northwest. The simulations were conducted for 48-hours using two nests with 9 and 3 km resolutions, respectively. Also, in the model settings, 41 levels are considered in the vertical direction, and the pressure at the highest level is 50 hPa. In these simulations, the fifth generation ECMWF reanalysis (ERA5) data with a spatial resolution of 0.25 degrees and 6-hours’ time step was used as the initial and boundary conditions. The optimal setup was determined based on the Taylor diagram. It involves specific parameterization schemes for different regions: Tiedtke scheme is used for the north and northeast regions, and OSAS scheme for the northwest region, to parameterize convection. WSM-3 scheme is used for microphysics in all three regions. QNSE/QNSE scheme is applied to the north and northwest regions, while YSU/MM5 scheme is used in the northeast for boundary/surface layer parameterization. For radiation, New Goddard and Dudhia schemes are best suited for long-wavelength and short-wavelength respectively. NOAH-MP scheme is also used for surface parameterization across all three regions. Daily snow depth values from the model compared with the observed station data using statistical indices such as RMSE and Bias. In this study, the data of 62 synoptic stations (12, 20 and 30 stations respectively in northeast, north and northwest regions of Iran) have been used to extract snow depth data. By applying the optimal configuration in all three regions, the results showed that the amount of error in the northwest is lower than the other two regions. The results of the investigation in each area showed that the model performs better in lower snow depth values (north region) and in the northeast, the model performance depends on the station height, which seems to be more accurate in the stations with lower altitudes. In the north and northeast regions, there are overestimates in most of the stations (with the bias of 0.115 and 0.264 m, respectively). In the northwest, unlike the other two regions, the model has underestimated the snow depths in most stations with the bias of -0.016 m. This could be due to an overestimation of snow albedo in the WRF model, as suggested by previous research. The RMSE error for all stations in the northwest is less than 0.018 m, which is lower than the other two regions of the north and northeast where the RMSE is 0.195 and 0.143 m, respectively. The differences between the model and station data could be due to several factors, including the inaccuracy of the model’s input data, the model’s limitations in accurately simulating snow depth, changes in snow albedo, environmental influences like local wind and sunlight, the area’s topography, and the spatial scale differences between the model and the stations.

کلیدواژه‌ها [English]

  • Snow depth
  • WRF model
  • Northern of Iran
  • optimal configuration
انصاری، ه. و معروفی، ص. (1396). برآورد آب معادل برف با استفاده از داده‌های سنجنده AMSR-E و مدل GLDAS (مطالعه موردی: حوضه‌های شمال‌غرب ایران). آب و خاک، 31(5)، 1497-1510.‎
خدامرادپور م.؛ ایران نژاد پ.؛ اخوان س. و بابایی خ. (1396). ارزیابی مدل برف طرحواره سطح NOAH-MP جفت‌شده با مدل منطقه­ای WRF در بارش­های سنگین برف در شمال و غرب ایران.‎ مجله ژئوفیزیک ایران، 11(4)، 146-163.
مجیدی کرهرودی، ف.؛ قرایلو، م. و ثابت قدم، س. (1403). ارزیابی عملکرد بانک داده‌های بازتحلیل ERA5  و MERRA2 در تخمین میزان عمق برف در شمال غرب ایران. فیزیک زمین و فضا، 50 (1)، 251-263.
Alonso-González, E., López-Moreno, J. I., Gascoin, S., García-Valdecasas Ojeda, M., Sanmiguel-Vallelado, A., Navarro-Serrano, F., Revuelto, J., Ceballos, A., Esteban-Parra, M. J., & Essery, R. (2018). Daily gridded datasets of snow depth and snow water equivalent for the Iberian Peninsula from 1980 to 2014. Earth System Science Data, 10(1), 303-315.
Anderson, E. A. (1976). A point energy and mass balance model of a snow cover. Stanford University.
Bell, V. A., Kay, A. L., Davies, H. N., & Jones, R. G. (2016). An assessment of the possible impacts of climate change on snow and peak river flows across Britain. Climatic Change, 136, 539-553.
Cohen, J., & Rind, D. (1991). The effect of snow cover on the climate. Journal of Climate, 4(7), 689-706.
Gao, L., Zhang, L., Shen, Y., Zhang, Y., Ai, M., & Zhang, W. (2021). Modeling snow depth and snow water equivalent distribution and variation characteristics in the Irtysh River Basin, China. Applied Sciences, 11(18), 8365.
Havens, S., Marks, D., FitzGerald, K., Masarik, M., Flores, A. N., Kormos, P., & Hedrick, A. (2019). Approximating input data to a snowmelt model using weather research and forecasting model outputs in lieu of meteorological measurements. Journal of Hydrometeorology, 20(5), 847-862.
Henderson, G. R., Peings, Y., Furtado, J. C., & Kushner, P. J. (2018). Snow–atmosphere coupling in the Northern Hemisphere. Nature Climate Change, 8(11), 954-963.
Liu, L., Ma, Y., Menenti, M., Zhang, X., & Ma, W. (2019). Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: A snow event simulation over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 124(1), 209-226.
Jordan, R. E. (1991). A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89.
Mudryk, L., Brown, R., Derksen, C., Luojus, K., Decharme, B., & Helfrich, S. (2019). Terrestrial snow cover.
Mudryk, L. R., Derksen, C., Kushner, P. J., & Brown, R. (2015). Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. Journal of Climate, 28(20), 8037-8051.
Mott, R., Daniels, M., & Lehning, M. (2015). Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover. Journal of Hydrometeorology, 16(3), 1315-1340.
Pan, X., Li, X., Cheng, G., Chen, R., & Hsu, K. (2017). Impact analysis of climate change on snow over a complex mountainous region using weather research and forecast model (wrf) simulation and moderate resolution imaging spectroradiometer data (modis)-terra fractional snow cover products. Remote Sensing, 9(8), 774.
Pepin, N., Bradley, R. S., Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M. Z., Liu, X. D., & Miller, J. R. (2015). Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5 (5), 424–430.
Poschlod, B., & Daloz, A. S. (2024). Snow depth in high-resolution regional climate model simulations over southern Germany–suitable for extremes and impact-related research?. The Cryosphere, 18(4), 1959-1981.
Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen, F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., & Miller, K. (2011). High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. Journal of Climate, 24(12), 3015-3048.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR technical note, 475(125), 10-5065.
Shi, J. J., Tao, W. K., Matsui, T., Cifelli, R., Hou, A., Lang, S., Tokay, A., Wang, N. Y., Peters-Lidard, C., Skofronick-Jackson, G., & Rutledge, S. (2010). WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. Journal of Applied Meteorology and Climatology, 49(11), 2246-2266.
Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of geophysical research: atmospheres, 106(D7), 7183-7192.
Tomasi, E., Giovannini, L., Zardi, D., & de Franceschi, M. (2017). Optimization of Noah and Noah_MP WRF land surface schemes in snow-melting conditions over complex terrain. Monthly Weather Review, 145(12), 4727-4745.
Van Pelt, W. J., Kohler, J., Liston, G. E., Hagen, J. O., Luks, B., Reijmer, C. H., & Pohjola, V. A. (2016). Multidecadal climate and seasonal snow conditions in Svalbard. Journal of Geophysical Research: Earth Surface, 121(11), 2100-2117.
Wang, W. (2022). Forecasting convection with a “scale-aware” Tiedtke cumulus parameterization scheme at kilometer scales. Weather and Forecasting, 37(8), 1491-1507.
Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Howat, I. M., Margulis, S. A., & Huning, L. S. (2017). Comparison of methods to estimate snow water equivalent at the mountain range scale: A case study of the California Sierra Nevada. Journal of Hydrometeorology, 18(4), 1101-1119.
Wu, X., Shen, Y., Wang, N., Pan, X., Zhang, W., He, J., & Wang, G. (2016). Coupling the WRF model with a temperature index model based on remote sensing for snowmelt simulations in a river basin in the Altay Mountains, north‐west China. Hydrological Processes, 30(21), 3967-3977.
Yongjiu, D., & Qingcun, Z. (1997). A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments. Advances in Atmospheric Sciences, 14(4), 433-460.
Zhang, C., Wang, Y., & Hamilton, K. (2011). Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Monthly Weather Review, 139(11), 3489-3513.