Aflaki, M., Mousavi, Z., Ghods, A., Shabanian, E., Vajedian, S., & Akbarzadeh, M. (2019). The 2017 Mw 6 Sefid Sang earthquake and its implication for the geodynamics of NE Iran. Geophysical Journal International, 218(2), 1227–1245. https://doi.org/10.1093/gji/ggz172
Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N. M., Briand, X., Emoto, K., & Miyake, H. (2014). Mapping pressurized volcanic fluids from induced crustal seismic velocity drops. Science, 345, 80–82. https://doi.org/10.1126/science.1254073
Brenguier, F., Shapiro, N. M., Campillo, M., Nercessian, A., & Ferrazzini, V. (2008). Towards forecasting volcanic eruptions using seismic noise. Nature Geosci, 1, 126–130. https://doi.org/10.1038/ngeo104
Clarke, D., Zaccarelli, L., Shapiro, N. M., & Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International, 186(2), 867–882. https://doi.org/10.1111/j.1365-246X.2011.05074.x.
Ghayournajarkar, N., & Fukushima, Y. (2020). Determination of the dipping direction of a blind reverse fault from InSAR: case study on the 2017 Sefid Sang earthquake, northeastern Iran. Earth, Planets and Space, 72(1), 1-18. https://doi.org/10.1186/s40623-020-01190-6
Grêt, A., Snieder, R., & Scales, J. (2006). Time-lapse monitoring of rock properties with coda wave interferometry. Journal of Geophysical Research: Solid Earth, 111(B3). https://doi.org/10.1029/2004JB003354
Hadziioannou, C., Larose, E., Coutant, O., Roux, P., & Campillo, M. (2009). Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments. The Journal of the Acoustical Society of America, 125(6), 36883695.
Hillers, G., & Campillo, M. (2016). Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise. Geophys. J. Int., 204, 1503–1517. doi:10.1093/gji/ggv515
Hobiger, M., Wegler, U., Shiomi, K., & Nakahara, H. (2016). Coseismic and post-seismic velocity changes detected by passive image interferometry: comparison of one great and five strong earthquakes in Japan. Geophys J Int, 205, 1053–1073. https://doi.org/10.1093/gji/ggw066
James, S. R., Knox, H. A., Abbott, R. E., & Screaton, E. J. (2017). Improved moving window cross‐spectral analysis for resolving large temporal seismic velocity changes in permafrost. Geophysical Research Letters, 44(9), 4018-4026. https://doi.org/10.1002/2016GL072468
Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismological Research Letters, 85(3), 715–726. doi: 10.1785/0220130073.
Liu, Z., Liang, C., Huang, H., Wang, C., & Cao, F. (2022). Seismic velocity variations at different depths reveal the dynamic evolution associated with the 2018 Kilauea eruption. Geophysical Research Letters, 49(3), e2021GL093691.
Nameni, M. R., Jafari, S., & Rahimi, H. (2024). Filling the gap of seismic ambient noise taken from the earth by modification of the frequency content of the existing time series. Arab J Geosci, 17, 87. https://doi.org/10.1007/s12517-024-11863-1
Nedaei, M., & Alizadeh, H. (2020). New insights into the 2017 Sefidsang earthquake by Coulomb stress change pattern and aftershock distributions: implication for active tectonics of NE Iran. Geopersia, 10(2), 351-365. https://doi.org/10.22059/GEOPE.2020.299725.648538
Petrova, N. V., Bezmenova, L. V., & Kurova, A. D. (2022). Earthquake of April 5, 2017, MW = 6.0, in Northeast Iran: Focal parameters, aftershock series, and macroseismic manifestations. Geophysical Survey, Russian Academy of Sciences. https://doi.org/10.3103/S0747923922070088
Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras faults, California. Journal of Geophysical Research, 89(B7), 5719-5731. https://doi.org/10.1029/JB089iB07p05719
Rubinstein, J. L., & Beroza, G. C. (2004). Evidence for widespread nonlinear strong ground motion in the MW 6.9 Loma Prieta earthquake. Bull Seismol Soc Am, 94, 1595–1608. https://doi.org/10.1785/012004009
Sens-Schönfelder, C., & Wegler, U. (2006). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia. Geophysical Research Letters, 33(21). https://doi.org/10.1029/2006GL027797
Sens-Schönfelder, C., & Wegler, U. (2007). Fault zone monitoring with passive image interferometry. Geophysical Journal International, 168(3), 1029–1033. https://doi.org/10.1111/j.1365-246X.2006.03284.x
Tape, C., Liu, Q., Maggi, A., & Tromp, J. (2010). Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 180(1), 433-462. https://doi.org/10.1111/j.1365-246X.2009.04429.x
Wu, C., Peng, Z., & Ben-Zion, Y. (2009). Non-linearity and temporal changes of fault zone site response associated with strong ground motion. Geophys J Int, 176, 265–278. https://doi.org/10.1111/j.1365-246X.2008.04005.x