Aerosol-Cloud-Lightning Interactions: A Comparative Study of Mountainous and Coastal Environments in Iran

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.

2 Atmospheric Science Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.

چکیده

Aerosols affect cloud microphysical processes and lightning activity by acting as cloud condensation nuclei. To investigate this, we analyzed lightning density data from the Lightning Imaging Sensor (LIS), alongside cloud fraction, cloud-top height, ice cloud optical thickness, and Aerosol Optical Depth (AOD) data from MODIS, as well as Convective Available Potential Energy (CAPE) from ERA5 data for the period 2000-2014. The study focused on two distinct environmental areas (R1 and R2) in Iran: R1, located between 32.5°N-34°N and 46°E-48°E in the mountainous west of Iran, experiencing three distinct climates–Mediterranean, cold mountainous, and warm semi-desert. In contrast, R2, situated between 27.5°N-29°N and 50°E-52°E, is characterized by plains with a warm and dry climate in the north and a humid, warm climate in the south. Monthly variation analysis revealed that lightning activity and AOD correlate well in spring and autumn but diverge in winter, with a negative correlation in summer due to suppressed convective storms at high AOD levels. Annual variation analysis indicates higher electrical activity in R1, which frequently experiences sand and dust storms. The results showed a moderate positive correlation between AOD and lightning activity in both regions, attributed to various AOD sources such as black carbon, dust, sea salt, and sulphate. Cloud fraction, ice cloud optical thickness, and cloud-top height showed positive correlations with lightning density in both R1 and R2 However, the correlation between CAPE and lightning density was lower in R2, likely due to higher atmospheric humidity stabilizing the environment and reducing the frequency and intensity of thunderstorms.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Aerosol-Cloud-Lightning Interactions: A Comparative Study of Mountainous and Coastal Environments in Iran

نویسندگان [English]

  • Reza Ramezani 1
  • Maryam Gharaylou 1
  • Majid Mazraeh Farahani 1
  • Nafiseh Pegahfar 2
1 Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
2 Atmospheric Science Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
چکیده [English]

Aerosols affect cloud microphysical processes and lightning activity by acting as cloud condensation nuclei. To investigate this, we analyzed lightning density data from the Lightning Imaging Sensor (LIS), alongside cloud fraction, cloud-top height, ice cloud optical thickness, and Aerosol Optical Depth (AOD) data from MODIS, as well as Convective Available Potential Energy (CAPE) from ERA5 data for the period 2000-2014. The study focused on two distinct environmental areas (R1 and R2) in Iran: R1, located between 32.5°N-34°N and 46°E-48°E in the mountainous west of Iran, experiencing three distinct climates–Mediterranean, cold mountainous, and warm semi-desert. In contrast, R2, situated between 27.5°N-29°N and 50°E-52°E, is characterized by plains with a warm and dry climate in the north and a humid, warm climate in the south. Monthly variation analysis revealed that lightning activity and AOD correlate well in spring and autumn but diverge in winter, with a negative correlation in summer due to suppressed convective storms at high AOD levels. Annual variation analysis indicates higher electrical activity in R1, which frequently experiences sand and dust storms. The results showed a moderate positive correlation between AOD and lightning activity in both regions, attributed to various AOD sources such as black carbon, dust, sea salt, and sulphate. Cloud fraction, ice cloud optical thickness, and cloud-top height showed positive correlations with lightning density in both R1 and R2 However, the correlation between CAPE and lightning density was lower in R2, likely due to higher atmospheric humidity stabilizing the environment and reducing the frequency and intensity of thunderstorms.

کلیدواژه‌ها [English]

  • Aerosols
  • Lightning
  • AOD
  • Cloud properties
  • CAPE
Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227-1230.
Altaratz, O., Koren, I., Yair, Y., & Price, C. (2010). Lightning response to smoke from Amazonian fires. Geophysical Research Letters, 37, L07801.
Altaratz, O., Kucienska, B., Kostinski, A., Raga, G. B., & Koren, I. (2017). Global association of aerosol with flash density of intense lightning. Environmental Research Letters, 12, 114037.
Araghi, A., Adamowski, J., & Jaghargh, M. R. (2016). Detection of trends in days with thunderstorms in Iran over the past five decades. Atmospheric Research, 172, 174-185.
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Radu, R., Schepers, D. & Soci, C. (2021). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147(741), 4186-4227.
Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2014). Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmospheric Research, 135, 404-414.
Chowdhuri, I., Pal, S. C., Saha, A., Chakrabortty, R., Ghosh, M., & Roy, P. (2020). Significant decrease of lightning activities during COVID-19 lockdown period over Kolkata megacity in India. Science of the Total Environment, 747, 141321.
Chakraborty, R., Chakraborty, A., Basha, G., & Ratnam, M. V. (2021). Lightning occurrences and intensity over the Indian region: long-term trends and future projections. Atmospheric Chemistry and Physics, 21, 11161-11177.
Dayeh, M. A., Farahat, A., Ismail-Aldayeh, H., & Abuelgasim, A. (2021). Effects of aerosols on lightning activity over the Arabian Peninsula. Atmospheric Research, 261, 105723.
Doswell III, C. A., & Rasmussen, E. N. (1994). The effect of neglecting the virtual temperature correction on CAPE calculations. Weather and forecasting, 9(4), 625-629.
Farias, W. R. G., Pinto Jr, O., Pinto, I. R. C. D. A., & Naccarato, K. P. (2014). The influence of urban effect on lightning activity: Evidence of weekly cycle. Atmospheric research, 135, 370-373.
Fernandes, W. A., Pinto, I. R., Pinto Jr, O., Longo, K. M., & Freitas, S. R. (2006). New findings about the influence of smoke from fires on the cloud‐to‐ground lightning characteristics in the Amazon region. Geophysical research letters, 33, L20810.
Gautam, S., Gautam, A. S., Singh, K., James, E. J., & Brema, J. (2021). Investigations on the relationship among lightning, aerosol concentration, and meteorological parameters with specific reference to the wet and hot humid tropical zone of the southern parts of India. Environmental Technology & Innovation, 22, 101414.
Ghalhari, G. A. F., & Shakeri, F. (2015). An assessment of temporal and spatial distribution of thunder storms in Iran. Journal of Geographic Information System, 7, 95.
Gharaylou, M., Pegahfar, N., & Alizadeh, O. (2024). The impact of lightning NOx production on ground‐level ozone in Tehran. Earth and Space Science, 11(3), e2023EA003372.
Gharaylou, M., Farahani, M. M., Hosseini, M., & Mahmoudian, A. (2019). Numerical study of performance of two lightning prediction methods based on: Lightning Potential Index (LPI) and electric POTential difference (POT) over Tehran area. Journal of Atmospheric and Solar-Terrestrial Physics, 193, 105067.
Gharaylou, M., Mahmoudian, A., Bidokhti, A. A., & Dadras, P. S. (2020). Mutual relationship between surface atmospheric pollutants and CG lightning in Tehran area. Environmental Monitoring and Assessment, 192, 1-12.
Han, Y., Luo, H., Wu, Y., Zhang, Y., & Dong, W. (2021). Cloud ice fraction governs lightning rate at a global scale. Communications Earth & Environment, 2(1), 157.
Heidarizadi, Z., Karimi, H., & Arami, S. A. (2017). Assessment of desertification hazard in Abu Ghoveyr Plain, Dehloran, Ilam Province of Iran. Journal of The Faculty of Forestry Istanbul University, 67(1), 49-64.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D. & Simmons, A. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049.
Kar, S. K., & Liou, Y. A. (2014). Analysis of cloud-to-ground lightning and its relation with surface pollutants over Taipei, Taiwan. Annales Geophysicae, 32, 1085–1092.
Kaufman, Y. J., Boucher, O., Tanré, D., Chin, M., Remer, L. A., & Takemura, T. (2005). Aerosol anthropogenic component estimated from satellite data. Geophysical Research Letters, 32, L17804.
Khain, A., Rosenfeld, D., & Pokrovsky, A. (2005). Aerosol impact on the dynamics and microphysics of deep convective clouds. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 131, 2639-2663.
Lal, D. M., & Pawar, S. D. (2011). Effect of urbanization on lightning over four metropolitan cities of India. Atmospheric Environment, 45, 191-196.
Lal, D. M., Ghude, S. D., Mahakur, M., Waghmare, R. T., Tiwari, S., Srivastava, M. K., Meena, G. S. & Chate, D. M. (2018). Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India. Climate Dynamics, 50, 3865-3884.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., & Kaufman, Y. J. (2007). Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112, D13211.
Liu, Y., Williams, E., Li, Z., Guha, A., LaPierre, J., Stock, M., Heckman, S., Zhang, Y. & DiGangi, E. (2021). Lightning enhancement in moist convection with smoke‐laden air advected from Australian wildfires. Geophysical Research Letters, 48, e2020GL092355.
Lyons, W. A., Nelson, T. E., Williams, E. R., Cramer, J. A., & Turner, T. R. (1998). Enhanced positive cloud-to-ground lightning in thunderstorms ingesting smoke from fires. Science, 282, 77-80.
Mansell, E. R., & Ziegler, C. L. (2013). Aerosol effects on simulated storm electrification and precipitation in a two-moment bulk microphysics model. Journal of the Atmospheric Sciences, 70, 2032-2050.
Mi, W., Li, Z., Xia, X., Holben, B., Levy, R., Zhao, F., Chen, H. & Cribb, M. (2007). Evaluation of the moderate resolution imaging spectroradiometer aerosol products at two aerosol robotic network stations in China. Journal of Geophysical Research: Atmospheres, 112, D22S08.
Mindrila, D. and Balentyne, P. (2017). Scatterplots and correlation. retrieved from http://www.westga.edu/assetsCOE/virtualresearch/scatterplots_and_correlation_notes.pdf
Mitzeva, R., Latham, J., & Petrova, S. (2006). A comparative modeling study of the early electrical development of maritime and continental thunderstorms. Atmospheric research, 82, 26-36.
Mojarrad, F., Masompour, J., Koshki, S., & Miri, M. (2019). Temporal-spatial analysis of thunderstorms in Iran. Geographical Planning of Space, 9(32), 213-232.
Pegahfar, N. (2022). Assessment of the performance of cumulus and boundary layer schemes in the WRF-NMM model in simulation of heavy rainfalls over the Bushehr Province during 2000-2020. Journal of the Earth and Space Physics, 48(2), 495-514.
Proestakis, E., Kazadzis, S., Lagouvardos, K., Kotroni, V., Amiridis, V., Marinou, E., Price, C. & Kazantzidis, A. (2016). Aerosols and lightning activity: The effect of vertical profile and aerosol type. Atmospheric Research, 182, 243-255.
Qie, X., Yair, Y., Shaoxuan, D., Huang, Z., & Jiang, R. (2024). Lightning response to temperature and aerosols. Environmental Research Letters.
Rafati, S., & Fattahi, E. (2022). Effects of regional thermodynamic parameters on lightning flash density as an indicator of convective activity over southwest Iran. Pure and Applied Geophysics, 179(5), 2011-2025.
Ramanathan, V. C. P. J., Crutzen, P. J., Kiehl, J. T., & Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. science, 294(5549), 2119-2124.
Ranjbar, H., Bazgir, M., Namdar Khojasteh, D., & Rostaminia, M. (2019). Identification of dust sources in Ilam province. Iranian Journal of Range and Desert Research, 26(3), 675-688.
Rezaei, M., Farajzadeh, M., Mielonen, T., & Ghavidel, Y. (2019). Analysis of spatio-temporal dust aerosol frequency over Iran based on satellite data. Atmospheric Pollution Research, 10(2), 508-519.
Rosenfeld, D., Williams, E., Andreae, M. O., Freud, E., Pöschl, U., & Rennó, N. O. (2012). The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds. Atmospheric Measurement Techniques, 5(8), 2039-2055.
Shubri, A. R., Vonnisa, M., & Marzuki, M. (2024). Influence of Aerosols on Lightning Activities in Java Island, Indonesia. Trends in Sciences, 21(2), 7214-7214.
Shi, Z., Hu, J., Tan, Y., Guo, X., Wang, H., Guan, X., & Wu, Z. (2022). Significant influence of aerosol on cloud-to-ground lightning in the Sichuan Basin. Atmospheric Research, 278, 106330.
Shi, Z., Wang, H., Tan, Y., Li, L., & Li, C. (2020). Influence of aerosols on lightning activities in central eastern parts of China. Atmospheric Science Letters, 21, e957.
Tan, Y. B., Peng, L., Shi, Z., & Chen, H. R. (2016). Lightning flash density in relation to aerosol over Nanjing (China). Atmospheric Research, 174, 1-8.
Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of the atmospheric sciences, 34(7), 1149-1152.
Ushio, T., Heckman, S. J., Boccippio, D. J., Christian, H. J., & Kawasaki, Z. I. (2001). A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data. Journal of Geophysical Research: Atmospheres, 106(D20), 24089-24095.
Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., & Zhang, R. (2011). Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China. Atmospheric Chemistry and Physics, 11, 12421-12436.
Wang, Q., Li, Z., Guo, J., Zhao, C., & Cribb, M. (2018). The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?. Atmospheric Chemistry and Physics, 18, 12797-12816.
Wang, H., Shi, Z., Wang, X., Tan, Y., Wang, H., Li, L., & Lin, X. (2021). Cloud-to-Ground Lightning Response to Aerosol over Air-Polluted Urban Areas in China. Remote Sensing, 13, 2600.
Wang, H., Tan, Y., Shi, Z., Yang, N., & Zheng, T. (2023). Diurnal differences in the effect of aerosols on cloud-to-ground lightning in the Sichuan Basin. Atmospheric Chemistry and Physics, 23(4), 2843-2857.
Westcott, N. E. (1995). Summertime cloud-to-ground lightning activity around major Midwestern urban areas. Journal of Applied Meteorology and Climatology, 34, 1633-1642.
Williams, E., & Stanfill, S. (2002). The physical origin of the land–ocean contrast in lightning activity. Comptes Rendus Physique, 3(10), 1277-1292.
Williams, E. R., Weber, M. E., & Orville, R. E. (1989). The relationship between lightning type and convective state of thunderclouds. Journal of Geophysical Research: Atmospheres, 94, 13213-13220.
Yadava, P. K., Sharma, A., Payra, S., Mall, R. K., & Verma, S. (2023). Influence of meteorological parameters on lightning flashes over Indian region. Journal of Earth System Science, 132(4), 179.
Yair, Y., Lynn, B., Price, C., Kotroni, V., Lagouvardos, K., Morin, E., ... & Llasat, M. D. C. (2010). Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. Journal of Geophysical Research: Atmospheres, 115, D04205.
Yoshida, S., Morimoto, T., Ushio, T., & Kawasaki, Z. (2009). A fifth‐power relationship for lightning activity from Tropical Rainfall Measuring Mission satellite observations. Journal of Geophysical Research: Atmospheres, 114, D09104.
Yuan, T., Remer, L. A., Pickering, K. E., & Yu, H. (2011). Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophysical Research Letters, 38, L04701.
Zhao, P., Li, Z., Xiao, H., Wu, F., Zheng, Y., Cribb, M.C., Jin, X. & Zhou, Y. (2020). Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China. Atmospheric Chemistry and Physics, 20(21), 13379-13397.
Zhao, P., Zhou, Y., Xiao, H., Liu, J., Gao, J., & Ge, F. (2017). Total lightning flash activity response to aerosol over China area. Atmosphere, 8, 26.