Barannik, M. B., Danilin, A. N., & Kat’kalov, Yu. V. (2012). A system for recording geomagnetically induced currents in neutrals of power autotransformers. Instruments and Experimental Techniques, 55(1), 110–115. https://doi.org/10.1134/S0020441211060121
Dimitrova, D. S., Kaishev, V. K., & Tan, S. (2020). Computing the Kolmogorov-Smirnov distribution when the underlying CDF is purely discrete, mixed, or continuous. Journal of Statistical Software, 95(10), 1–42. https://doi.org/10.18637/jss.v095.i10
Dobbins, R. W., & Schriiver, K. (2015). Electrical claims and space weather: Measuring the visible effects of an invisible force. https://static1.squarespace.com/static/57bc8a4a414fb50147550a88/t/57d84e4d1b631b96124f3c69/1473793614089/2015+Zurich-Electrical+Claims+and+Space+Weather.pdf
Eckhard, L., Werner, A. S., & Markus, A. (2001). Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5), 341–352.
Eroshenko, E. A., Belov, A. V., Boteler, D., Gaidash, S. P., Lobkov, S. L., Pirjola, R., & Trichtchenko, L. (2010). Effects of strong geomagnetic storms on Northern railways in Russia. Advances in Space Research, 46(9), 1102–1110. https://doi.org/10.1016/j.asr.2010.05.017
Everitt, B. S. (2002). Cambridge dictionary of statistics (2nd ed.). Cambridge University Press.
Fukunishi, H., & Ayukawa, M. (1972). Auroral observations at Syowa Station, 1970-1971. Reports of the Japanese Antarctic Research Expedition, 36–68.
Kataoka, R., & Ngwira, C. (2016). Extreme geomagnetically induced currents. Progress in Earth and Planetary Science, 3, 23.
Marshall, R. A., Smith, E. A., Francis, M. J., Waters, C. L., & Sciffer, M. D. (2011). A preliminary risk assessment of the Australian region power network to space weather. Space Weather, 9, S10004. https://doi.org/10.1029/2011SW000685
PGI Geophysical data. (2013). January, February, March 2013 (V. Vorobjev, Ed.). PGI KSC RAS.
Pilipenko, V. A. (2021). Space weather impact on ground-based technological systems. Solar-Terrestrial Physics, 3, 72–110. https://doi.org/10.12737/szf-73202106
Pilipenko, V. A., Chernikov, A. A., Soloviev, A. A., Yagova, N. V., Sakharov, Ya. A., Kostarev, D. V., Kozyreva, O. V., Vorobev, A. V., & Belov, A. V. (2023). Influence of space weather on the reliability of the transport system functioning at high latitudes. Russian Journal of Earth Sciences, 23, ES2008. https://doi.org/10.2205/2023ES000824
Pirjola, R., Pulkkinen, A., & Viljanen, A. (2003). Studies of space weather effects on the Finnish natural gas pipeline and on the Finnish high-voltage power system. Advances in Space Research, 31(4), 795–805. https://doi.org/10.1016/S0273-1177(02)00781-0
Pratscher, K. M., Ingham, M., Mac Manus, D. H., Kruglyakov, M., Heise, W., & Rodger, C. J. (2024). Modeling GIC in the southern South Island of Aotearoa New Zealand using magnetotelluric data. Space Weather, 22, e2024SW003907. https://doi.org/10.1029/2024SW003907
Radasky, W., Emin, Z., & Adams, R. (2019). CIGRE TB 780: Understanding of geomagnetic storm environment for high voltage power grids. Technical report.
Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605–610. https://doi.org/10.1093/biomet/66.3.605
Selivanov, V. N., Aksenovich, T. V., Bilin, V. A., Kolobov, V. V., & Sakharov, Y. A. (2023). Database of geomagnetically induced currents in the main transmission line “Northern Transit”. Solar-Terrestrial Physics, 3, 100–110. https://doi.org/10.12737/szf-93202311
Sigernes, F., Holmen, S. E., & Biles, D. (2014). Auroral all-sky camera calibration. Geoscientific Instrumentation, Methods and Data Systems, 3, 241–245. https://doi.org/10.5194/gi-3-241-2014
Soloviev, A. A., Sidorov, R. V., & Oshchenko, A. A. (2022). On the need for accurate monitoring of the geomagnetic field during directional drilling in the Russian Arctic. Izvestiya, Physics of the Solid Earth, 58, 420–434. https://doi.org/10.1134/S1069351322020124
Tanskanen, E. I. (2009). A comprehensive high-throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined. Journal of Geophysical Research, 114, A05204. https://doi.org/10.1029/2008JA013682
Vorobev, A. V., & Pilipenko, V. A. (2021). Geomagnetic data recovery approach based on the concept of digital twins. Solar-Terrestrial Physics, 2, 53–62. https://doi.org/10.12737/szf-72202105
Vorobev, A. V., Lapin, A. N., & Vorobeva, G. R. (2023). Software for automated recognition and digitization of archive data of aurora optical observations. Informatics and Automation, 22(5), 1177–1206. https://doi.org/10.15622/ia.22.5.8
Vorobev, A. V., Lapin, A. N., Soloviev, A. A., & Vorobeva, G. R. (2024). An approach to interpreting natural indicators of the state of space weather to assess the effects of its impact on high-latitude power systems. Physics of the Solid Earth, 4, 100–110. https://doi.org/10.31857/S0002333724040071
Vorobev, A. V., Pilipenko, V. A., Sakharov, Y. A., & Selivanov, V. N. (2019). Statistical relationships between variations of the geomagnetic field, auroral electrojet, and geomagnetically induced currents. Solar-Terrestrial Physics, 1, 48–58. https://doi.org/10.12737/szf-51201905
Vorobev, A. V., Soloviev, A. A., Pilipenko, V. A., & Vorobeva, G. R. (2022). Interactive computer model for aurora forecast and analysis. Solar-Terrestrial Physics, 2, 93–100. https://doi.org/10.12737/szf-82202213
Vorobev, A. V., Soloviev, A. A., Pilipenko, V. A., Vorobeva, G. R., Gainetdinova, A. A., Lapin, A. N., Belakhovsky, V. B., & Roldugin, A. V. (2023). Local diagnostics of aurora presence based on intelligent analysis of geomagnetic data. Solar-Terrestrial Physics, 9(2), 22–30. https://doi.org/10.12737/stp-92202303
Vorobev, A., Soloviev, A., Pilipenko, V., Vorobeva, G., & Sakharov, Y. (2022). An approach to diagnostics of geomagnetically induced currents based on ground magnetometers data. Applied Sciences, 12(3), 1522. https://doi.org/10.3390/app12031522
Wintoft, P., Wik, M., & Viljanen, A. (2015). Solar wind-driven empirical forecast models of the time derivative of the ground magnetic field. Journal of Space Weather and Space Climate, 5, A7. https://doi.org/10.1051/swsc/2015008