Abbas, M. A., Al-Mudhafar, W. J., & Wood, D. A. (2023). Improving permeability prediction in carbonate reservoirs through gradient boosting hyperparameter tuning. Earth Science Informatics, 16, 3417–3432. https://doi.org/10.1007/s12145-023-01099-0.
Ahmadi, M. A., Ahmadi, M. R., Hosseini, S. M., & Ebadi, M. (2014). Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence. Journal of Petroleum Science and Engineering, 123, 183–200.
Alyaev, S., & Elsheikh, A. H. (2022). Direct multi-modal inversion of geophysical logs using deep learning. Earth and Space Science, 9, e2021EA002186. https://doi.org/10.1029/2021EA002186.
Al-Khafaji, H., Qingbang, M.,
Wahib, Y.,
Samer, W.,
Wakeel, H.,
Ahmed, K. A.,
Fayez, H., &
Ghamdan A. (2024). Advanced porosity prediction in heterogeneous oil reservoirs: Using novel machine learning and deep learning techniques. In J. Lin (Ed.), Proceedings of the International Field Exploration and Development Conference 2023. IFEDC 2023. Springer Series in Geomechanics and Geoengineering (pp. 123-138). Springer, Singapore. https://doi.org/10.1007/978-981-97-0479-8_45.
Al Shalabi, L., & Shaaban, Z. (Eds.). (2006). Normalization as a preprocessing engine for data mining and the approach of preference matrix. In 2006 International Conference on Dependability of Computer Systems. IEEE.
Bittar, M., Wang, S., Wu, X., & Chen, J. (2021). Multiple Well-Log Depth Matching Using Deep Q-Learning. Petrophysics, 62, 353–361. https://doi.org/10.30632/PJV62N4-2021a1.
Carey, C., Boucher, T., Mahadevan, S., Bartholomew, P., & Dyar, M. (2015). Machine learning tools for mineral recognition and classification from Raman spectroscopy. Journal of Raman Spectroscopy, 46(10), 894–903.
Dargi, M., Khamehchi, E., & Mahdavi, K. J. (2023). Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability. Scientific Reports, 13(1), 11851. https://doi.org/10.1038/s41598-023-38395-0.
Esteghlal, S., Samadi, S. H., Hosseini, S. M. H., & Moosavi-Movahedi, A. A. (2023). Identification of machine learning neural-network techniques for prediction of interfacial tension reduction by zein based colloidal particles. Industrial & Engineering Chemistry Research, 36, 106546. https://doi.org/10.1021/acs.iecr.3c00956.
Fernando, J. (2023, April 08). R-Squared. Investopedia. https://www.investopedia.com/terms/r/r-squared.asp.
Fu, L.-Y. (2003). An Information Integrated Approach for Reservoir Characterization. In Reservoir Characterization (pp. 177-192). Springer. https://doi.org/10.1007/978-94-017-0271-3_11.
Fu, L., Lin, T., Li, W., & Ma, S. (2022). Machine learning in petrophysics: Advantages and limitations. Artificial Intelligence in Geosciences, 3, 157-161.
Gamal, H., & Elkatatny, S. (2022). Prediction model based on an artificial neural network for rock porosity. Arabian Journal for Science and Engineering, 47(9), 11211-11221.
Gupta, A., Pandey, A., Kesarwani, H., Sharma, S., & Saxena, A. (2022). Automated determination of interfacial tension and contact angle using computer vision for oil field applications. Journal of Petroleum Exploration and Production Technology, 12(5), 1453-1461. https://doi.org/10.1007/s13202-021-01313-0.
Hadavimoghaddam, F., Ostadhassan, M., Sadri, M. A., Bondarenko, T., Chebyshev, I., & Semnani, A. (2021). Prediction of Water Saturation from Well Log Data by Machine Learning Algorithms: Boosting and Super Learner. Journal of Marine Science and Engineering, 9, 666. https://doi.org/10.3390/jmse9060666.
Hassanzadeh, P., Hezarkhani, A., Rabbani, A. R., & Khajooie, S. (2019). Integrating geochemical and reservoir engineering approach to evaluate reservoir continuity: A case study from Foroozan field, Offshore Iran. Journal of Earth System Science, 128, 83. https://doi.org/10.1007/s12040-019-1105-x.
Hussain, W., Miao. L., Muhammad. A., Syed. M. H., Sajid. A., Sartaj. H., Asim. F. N., & Saddam. H. (2023). Machine learning - a novel approach to predict the porosity curve using geophysical logs data: An example from the Lower Goru sand reservoir in the Southern Indus Basin, Pakistan. Journal of Applied Geophysics, 214, 105067. https://doi.org/10.1016/j.jappgeo.2023.105067.
Hussain, W., Ehsan, M., Pan, L., Wang, X., Ali, M., Din, S. U., Hussain, H., Jawad, A., Chen, S., Liang, H., & Liang, L. (2023). Prospect evaluation of the Cretaceous Yageliemu clastic reservoir based on geophysical log data: A case study from the Yakela gas condensate field, Tarim Basin, China. Energies, 16(6), 2721. https://doi.org/10.3390/en16062721.
Jo, H., Cho, Y., Pyrcz, M. J., Tang, H., & Fu, P. (2021). Machine learning-based porosity estimation from spectral decomposed seismic data.
Jo, J.-M. (2019). Effectiveness of normalization pre-processing of big data to the machine learning performance. Journal of Korea Institute of Electronic Communication Sciences, 14(3), 547–552.
Kirch, A., Celaschi, Y. M., de Almeida, J. M., & Miranda, C. R. (2020). Brine–oil interfacial tension modeling: Assessment of machine learning techniques combined with molecular dynamics. ACS Applied Materials & Interfaces, 12(13), 15837-15843. https://doi.org/10.1021/acsami.0c02972.
Li, Z., Xie, Y., Li, X., & Zhao, W. (2021). Prediction and application of porosity based on support vector regression model optimized by adaptive dragonfly algorithm. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(9), 1073-1086.
Mahzad, M., & Bagheri, M. (2025). Predictive reconstruction of missing geological events and patterns in real-life 3D post-stack seismic images: A novel U-Net-based deep learning approach. Carbonates and Evaporites, 40(12). https://doi.org/10.1007/s13146-024-01050-4.
Mahzad, M., & Riahi, M. A. (2024). Reservoir characterization reimagined: A hybrid neural network approach for direct three-dimensional petrophysical property characterization.
Carbonates and Evaporites, 39(67).
https://doi.org/10.1007/s13146-024-00975-0.
Maniscalco, R., Fazio, E., Punturo, R., Cirrincione, R., Di Stefano, A., Distefano, S., Forzese, M., Lanzafame, G., Leonardi, G. S., Montalbano, S., Pellegrino, A. G., Raele, A., & Palmeri, G. (2022). The porosity in heterogeneous carbonate reservoir rocks: Tectonic versus diagenetic imprint—A multi-scale study from the Hyblean Plateau (SE Sicily, Italy). Geosciences, 12(4), 149.
Moosavi, N., Bagheri, M., Nabi-Bidhendi, M., & Heidari, R. (2023). Porosity prediction using Fuzzy SVR and FCM SVR from well logs of an oil field in south of Iran. Acta Geophysica, 71(2), 769-782.
Munir, M. N., Zafar, M., & Ehsan, M. (2023). Comparative and Statistical Analysis of Core-Calibrated Porosity with Log-Derived Porosity for Reservoir Parameters Estimation of the Zamzama GAS Field, Southern Indus Basin, Pakistan. Arabian Journal for Science and Engineering, 48, 7867–7882. https://doi.org/10.1007/s13369-022-07523-9.
Nasseri, A., & Mohammadzadeh, M. (2017). Evaluating distribution pattern of petrophysical properties and their monitoring under a hybrid intelligent-based method in southwest oil field of Iran. Arabian Journal of Geosciences, 10(10). https://doi.org/10.1007/s12517-016-2766-2.
Pan, J., Zhuang, Y., & Fong, S. (Eds.). (2016). The impact of data normalization on stock market prediction: using SVM and technical indicators. In Soft Computing in Data Science: Second International Conference, SCDS 2016, Kuala Lumpur, Malaysia, September 21–22, 2016, Proceedings 2. Springer.
Shiri, Y., Moradzadeh, A., Shiri, A., & Chehrazi, A. (2011). Application of adaptive Neuro-Fuzzy inference system for prediction of porosity from seismic attributes; case study, Farour.A oil field, Persian Gulf, Iran. Journal of Seismic Exploration, 20, 177-192.
Stanton, J. M. (2001). Galton, Pearson, and the Peas: A brief history of linear regression for statistics instructors. Journal of Statistics Education, 9(3). https://doi.org/10.1080/10691898.2001.1191053.
Subasi, A., El-Amin, M. F., Darwich, T., & Mubarak. D. (2022). Permeability prediction of petroleum reservoirs using stochastic gradient boosting regression. Journal of Ambient Intelligence and Humanized Computing, 13, 3555–3564. https://doi.org/10.1007/s12652-020-01986-0.
Sun, J., Zhang, R., Chen, M.,
Chen. B.,
Wang. X.,
Li. Q., & Ren. L. (2021). Identification of Porosity and Permeability While Drilling Based on Machine Learning.
Arabian Journal for Science and Engineering, 46, 7031–7045. https://doi.org/10.1007/s13369-021-05432-x.
Sun, Y., Pang, S., Zhang, J., & Zhang, Y. (2024). Porosity prediction through well logging data: A combined approach of convolutional neural network and transformer model (CNN-transformer). Physics of Fluids, 36(2).
Tam, T. N. T., & Thanh, D. H. T. (2023). Estimate Petrophysical Properties by Using Machine Learning Methods. In Vo, P. L., Tran, D. A., Pham, T. L., Le Thi Thu, H., & Nguyen Viet, N. (Eds.), Advances in Research on Water Resources and Environmental Systems. GTER 2022. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-17808-5_29.
Talebkeikhah, M., Sadeghtabaghi, Z., & Shabani, M. (2021). A comparison of machine learning approaches for prediction of permeability using well log data in the hydrocarbon reservoirs. Journal of Human Earth Future, 2(2), 82–99.
Tiab, D., & Donaldson, E. C. (2016). Chapter 3 - Porosity and Permeability. In D. Tiab & E. C. Donaldson (Eds.), Petrophysics (4th ed., pp. 67-186). Gulf Professional Publishing.
Wu, L., Dong, Z., Li, W., Jing, C., & Qu, B. (2021). Well-Logging Prediction Based on Hybrid Neural Network Model. Energies, 14, 8583. https://doi.org/10.3390/en14248583.
Yousefmarzi, F., Haratian, A., Mahdavi Kalatehno, J., &
Keihani Kamal, M. (2024). Machine learning approaches for estimating interfacial tension between oil/gas and oil/water systems: a performance analysis. Scientific Reports, 14, 858. https://doi.org/10.1038/s41598-024-51597-4.
Yu, S., Zhu, K., & Diao, F. (2008). A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction. Applied Mathematics and Computation, 195, 66-75. https://doi.org/10.1016/j.amc.2007.04.088.
Zamani, M. G., Nikoo, M. R., Rastad, D., & Nematollahi, B. (2023). A comparative study of data-driven models for runoff, sediment, and nitrate forecasting. Journal of Environmental Management, 341, 118006. https://doi.org/10.1016/j.jenvman.2023.118006.
Zou, Y., Chen, Y., & Deng, H. (2021). Gradient Boosting Decision Tree for Lithology Identification with Well Logs: A Case Study of Zhaoxian Gold Deposit, Shandong Peninsula, China. Natural Resources Research, 30, 3197–3217. https://doi.org/10.1007/s11053-021-09894-6.