روش‌های تفاضل متناهی مرتبه‌بالا بر روی شبکه مکعب‌کره: کاربست به فرارفت کمیت نرده‌ای غیرفعال

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران.

چکیده

در کار حاضر، پیاده‌سازی شبکه مکعب‌کره مرکزی و حل تفاضل متناهی مرتبه‌بالای معادله فرارفت بر روی آن ارائه شده‌اند. اگرچه این پیاده‌سازی به‌گونه‌ای است که به‌کارگیری عملگرهای تفاضل متناهی از نوع و مرتبه‌های مختلف را ممکن می‌کند، در این کار، صرفاً به مقایسه روش‌های تفاضل متناهی صریح مرکزی مرتبه ۲، ۴ و ۶ بسنده شده است. انتگرال‌گیری زمانی به دو روش رونگه-کوتای کلاسیک مرتبه ۴ و لیپفراگ با پالایه زمانی وایازش چندجمله‌ای درجه یک با مرتبه دقت ۲ انجام شده است. این روش‌ها در معادله فرارفت با استفاده از آزمون گردش جسم صلب زنگوله‌های کسینوسی با رده‌های مشتق‌پذیری  و  مورد مقایسه قرار گرفته‌اند. روش‌های مکانی، زمانی و آزمون‌های موردی به‌گونه‌ای انتخاب شده‌اند که امکان بررسی عملکرد اجزای مختلف روش عددی و عوامل مؤثر بر دقت آنها تسهیل شود. نتایج آزمون‌ها نشان می‌دهد که اگرچه رده مشتق‌پذیری پایین یا مرتبه پایین روش انتگرال‌گیری زمانی می‌توانند مرتبه دقت دست‌یافتنی را محدود کنند، بااین‌حال به‌کارگیری عملگرهای تفاضل متناهی مرتبه‌بالا می‌تواند خواص پایستاری مدل را به‌طور قابل‌توجهی بهبود دهد. تمامی روش‌های به‌کاررفته در اینجا برای پایداری نیاز به مقداری میرایی مصنوعی مقیاس‌گزین دارند که در این‌کار به‌وسیله پالایه‌های فضایی تأمین می‌شود. نتایج آزمون بلندمدت نشان می‌دهد که روش‌های مرتبه‌بالا‌تر و تفکیک‌های بالاتر به میرایی مصنوعی کمتری برای پایداری محاسباتی نیاز دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

High-order finite difference methods on the cubed sphere: Application to passive scalar advection

نویسندگان [English]

  • Eliad Bagherzadegan
  • Ali Reza Mohebalhojeh
  • Sarmad Ghader
Department of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran.
چکیده [English]

The present work is part of our ongoing effort to make use of the cubed sphere for global atmospheric modeling applications. To this end, high-order numerical solutions of advection equation on the gnomonic cubed sphere grid are presented. Arbitrary-order one-dimensional interpolation based on spherical distance of the grid points have been used at the halo regions to bind the faces of the cubed sphere together. Although, the implementation of the model in this work is such that it makes using finite difference operators of various types and orders straightforward, we only discuss the results of 2nd-, 4th-, and 6th-order centered explicit operators. For time integration, the classical 4th-order Runge-Kutta method and the leapfrog method with a first-degree polynomial regression time filter with 2nd-order accuracy have been used. These methods have been compared by solving the advection equation using solid body rotations of  and  cosine bells. The long-range variant of this test is used to analyze the stability of the schemes. The methods and test cases have been chosen in such a way that facilitates the assessment of different components of the numerical scheme and factors affecting their accuracy.
Results of the advection test cases, demonstrate that although low differentiability class of the advected field or low order of accuracy of the time integration scheme, could limit the actual order of accuracy of the solution, conservation properties of the model could, nevertheless, be improved significantly by the use of high-order finite difference operators. All of the methods used in this work need some scale-selective artificial dissipation for stability which has been supplied in the form of high-order explicit filters. Single-parameter fractional filters (i.e. filters that remove only a fraction of the shortest waves) are used in the long-range integrations to determine the required amount of artificial dissipation for each method.
Results demonstrate that lower-order methods and lower resolutions require more artificial dissipation for stability. Since there is no systematic cascade of variance to smaller scales in the solid body rotation test-case, application of filter does not reduce the order of accuracy of the normalized variance. Also, the minimum required dissipation which has been calculated here might not be sufficient in cases where there is such a cascade. Time traces of 2-norm of error display a linear increase with time with no jumps or transient increases. Although such transient increases are present in time traces of normalized mean and variance, which might signify grid imprinting, this does not pose a problem since these non-conservation errors converge with or faster than the expected order. On the whole, the results demonstrate the superiority of the high-order methods in terms of accuracy and performance. In long-range integrations, high-order methods exhibit convergence of errors at low resolutions even after 100 revolutions of the cosine bells.

کلیدواژه‌ها [English]

  • Gnomonic cubed sphere
  • Advection equation
  • Finite difference method
  • Filter
  • Fractional filter
Brachet, M. (2018). Schémas compacts hermitiens sur la sphère: applications en climatologie et océanographie numérique. PhD thesis, Université de Lorraine.
Brachet, M., & Croisille, J.-P. (2022). A center compact scheme for the shallow water equations on the sphere. Computers & Fluids, 236, 105286.
Durran, D. R. (2010). Numerical Methods for Fluid Dynamics: With Applications to Geophysics. New York, NY: Springer New York.
Harris, L. M., Lauritzen, P. H., & Mittal, R. (2011).
A flux-form version of the conservative semi- Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. Journal of
Computational Physics, 230(4), 1215–1237.
Kageyama, A., & T. Sato (2004). “Yin-Yang grid”: An overset grid in spherical geometry. Geochemistry, Geophysics, Geosystems 5(9). Q09005.
Kent, J., Ullrich, P. A., & Jablonowski, C. (2014). Dynamical core model intercomparison project: Tracer transport test cases. Quarterly Journal of the Royal Meteorological Society, 140(681), 1279–1293.
Levy, M. N., Nair, R. D., & Tufo, H. M. (2009). A high-order element-based Galerkin method for the barotropic vorticity equation. International Journal for Numerical Methods in Fluids, 59(12), 1369–1387.
Nair, R., Côté, J., & Staniforth, A. (1999). Cascade interpolation for semi-Lagrangian advection over the sphere. Quarterly Journal of the Royal Meteorological Society, 125(556), 1445–1468.
Nair, R. D., Thomas, S. J., & Loft, R. D. (2005). A discontinuous Galerkin transport scheme on the cubed sphere. Monthly Weather Review, 133(4), 814–828.
Phillips, N. A. (1957). A map projection system suitable for large-scale numerical weather prediction. Journal of the Meteorological Society of Japan., Ser. II 35A, 262–267.
Purser, R. J. (1998). Non-standard grids. In Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, 7-11 September 1998, 44–72.
Purser, R. J., & Rančić, M. (1997, March). Conformal octagon: An attractive framework for global models offering quasi-uniform regional enhancement of resolution. Meteorology and Atmospheric Physics, 62(1), 33–48.
Purser, R. J., & Rančić, M. (1998). Smooth quasi-homogeneous gridding of the sphere. Quarterly Journal of the Royal Meteorological Society 124(546), 637–647.
Rančić, M., Purser, R. J., & Mesinger,‌ F. (1996). A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quarterly Journal of the Royal Meteorological Society, 122(532), 959–982.
Ronchi, C., Iacono, R., & Paolucci, P. (1996). The “cubed sphere”: A new method for the solution of partial differential equations in spherical geometry. Journal of Computational Physics, 124(1), 93–114.
Rood, R. B. (2011). A perspective on the role of the dynamical core in the development of weather and climate models. In P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, 513–537. Berlin, Heidelberg: Springer Berlin Heidelberg.
Sadourny, R. (1972). Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Monthly Weather Review, 100(2), 136–144.
Sadourny, R., Arakawa, A., & Mintz, Y. (1968). Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Monthly Weather Review, 96(6), 351–356.
Staniforth, A., & Thuburn, J. (2012). Horizontal grids for global weather and climate prediction models: a review. Quarterly Journal of the Royal Meteorological Society, 138(662), 1–26.
Taylor, M., Tribbia, J., & Iskandarani, M. (1997). The spectral element method for the shallow water equations on the sphere. Journal of Computational Physics, 130(1), 92–108.
Thomas, S. J., & Loft, R. D. (2000). Parallel semi-implicit spectral element methods for atmospheric general circulation models. Journal of Scientific Computing, 15(4), 499–518.
Thomas, S. J., & Loft, R. D. (2002). Semi-implicit spectral element atmospheric model. Journal of Scientific Computing, 17(1), 339–350.
Thuburn, J. (2011). Conservation in dynamical cores: What, how and why? In P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair (Eds.), Numerical Techniques for Global Atmospheric Models, 345–355. Berlin, Heidelberg: Springer Berlin Heidelberg.
Thuburn, J., Cotter, C. J., & Dubos, T. (2014). A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids. Geoscientific Model Development, 7(3), 909–929.
Williamson, D. L. (1968). Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20(4), 642–653.
Williamson, D. L. (1970). Integration of the primitive barotropic model over a spherical geodesic grid. Monthly Weather Review, 98(7), 512–520.
Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., & Swarztrauber, P. N. (1992). A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics, 102(1), 211– 224.
Yazgi, D., Mohebalhojeh, A. R., & Ghader, S. (2017). Using polynomial regression in designing the time filters for the leapfrog time-stepping scheme. Monthly Weather Review, 145(5), 1779–1795.
Zdunkowski, W., & Bott, A. (2005). Dynamics of the Atmosphere: A Course in Theoretical Meteorology. Cambridge University Press.