پایدارسازی محاسبه گرادیان قائم داده‌های میدان پتانسیل در مقابل نوفه تصادفی با استفاده از منظم‌سازی تیخونوف

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه نفت و ژئوفیزیک، دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران.

چکیده

محاسبه گرادیان قائم داده‌های میدان پتانسیل یکی از ابزارهای مهم در تفسیر داده‌های ژئوفیزیکی به شمار می‌رود که برای شناسایی مرزهای زیرسطحی و ویژگی‌های زمین‌شناسی استفاده می‌شود. یکی از چالش‌های اصلی در این محاسبات، تأثیر نوفه تصادفی است که موجب ناپایداری و کاهش دقت نتایج می‌شود. در این مقاله، روش‌های مختلف پایدارسازی محاسبه گرادیان قائم در برابر نوفه تصادفی شامل منظم‌سازی و فیلتر ادامه فراسو مورد بررسی قرار گرفته است. در روش منظم‌سازی، با استفاده از ضریب منظم‌ساز بهینه، تأثیر نوفه کاهش یافته و پایداری محاسبات در مقابل نوفه تصادفی به‌طور چشمگیری افزایش می‌یابد. فیلتر ادامه فراسو نیز به‌طور مؤثر اثر نوفه را کاهش می‌دهد، اما نتایج نشان می‌دهد که روش منظم‌سازی نسبت به آن پایداری بیشتری دارد. برای ارزیابی این روش‌ها، از داده‌های مصنوعی و واقعی استفاده شده است و نتایج نشان‌دهنده پایداری بیشتر روش‌های منظم‌سازی و فیلتر ادامه فراسو در مقایسه با روش تبدیل فوریه است. نتایج به‌دست ‌آمده در داده‌های واقعی نیز بهبود قابل‌توجهی در دقت شناسایی لبه‌ها و ساختارهای زیرسطحی ارائه داده است. این مقاله، تأثیر انتخاب روش و تنظیم دقیق پارامترها در بهبود نتایج تفسیر داده‌های میدان پتانسیل را روشن می‌سازد و می‌تواند به‌عنوان ابزار مؤثری در مطالعات اکتشافی و تفسیر ساختارهای زمین‌شناسی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stabilization of Vertical Gradient Calculation Against Random Noise in Potential Field Data Using Tikhonov Regularization

نویسندگان [English]

  • Mina Amirnia
  • Amin Roshandel Kahoo
  • Hamid Aghajani
Department of Petroleum and Geophysics, Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran.
چکیده [English]

Accurate calculation of vertical gradients in potential field data plays a vital role in geophysical surveys and subsurface explorations. These gradients, which are derived from gravity or magnetic field measurements, serve to enhance the resolution of anomaly boundaries and help differentiate between geological structures located at various depths. By sharpening the edges of anomalies, vertical gradients allow geophysicists to better understand the geometry and distribution of subsurface features such as faults, intrusive bodies, or mineral deposits. However, calculating these gradients is highly sensitive to the presence of random noise, which is an inevitable component of real-world data. This sensitivity becomes increasingly problematic when computing higher-order vertical gradients, where noise amplification can dominate the signal, leading to unstable, distorted signals and hence unreliable interpretations.
This study addresses the critical need to stabilize vertical gradient calculations in the presence of noise. It begins by analyzing the standard method of calculating vertical gradients in the frequency domain using Fourier transforms. While this approach is efficient and mathematically straightforward, it inherently increases the influence of high-frequency components, many of which represent noise rather than useful geological information. As a result, the final gradient estimates obtained through this method may be contaminated, especially in areas with complex geological settings or low signal-to-noise ratios. To overcome these limitations, the paper investigates two advanced stabilization techniques: Tikhonov regularization and upward continuation filtering.
Tikhonov regularization is a well-established method for addressing ill-posed inverse problems. In this context, it introduces a stabilizing constraint that penalizes overly sharp or erratic variations in the gradient estimates. This is achieved through the minimization of a cost function that includes both a data fidelity term and a regularization term that suppresses rapid changes. The strength of this regularization is controlled by a parameter that must be carefully selected. The paper evaluates two methods for determining this parameter: the norm C method and Morozov’s discrepancy principle. These approaches help ensure a balance between suppressing noise and preserving meaningful geological detail in the gradient results.
Upward continuation filtering is another effective technique explored in this study. It works by projecting the data to a higher elevation, which naturally smooths out high-frequency (i.e., shallow or noisy) components. This filtering effect reduces the influence of noise and results in more stable and geologically interpretable gradient estimates, particularly for deeper structures.
The effectiveness of these methods is demonstrated using both synthetic and real geophysical datasets. A synthetic model involving a Bouguer anomaly at a 10-meter depth shows that Tikhonov regularization and upward continuation outperform conventional Fourier-based gradient calculations in terms of accuracy and noise resistance. Furthermore, real-world gravity data from Slovakia are used to validate the practical utility of these approaches. The improved clarity in detecting geological features such as faults and shear zones, underscores the value of stabilized gradient methods.
In conclusion, the study highlights the importance of using stabilization techniques for vertical gradient computation. Both Tikhonov regularization and upward continuation significantly improve the reliability and interpretability of gradient estimates, making them essential tools for modern geophysical data analyses and subsurface mapping.

کلیدواژه‌ها [English]

  • Vertical gradient؛ random noise؛ Tikhonov regularization؛ Morozov’s discrepancy principle
  • upward continuation
 Alvandi, A., Ardestani, V. E., & Motavalli-Anbaran, S.-H. (2022). Calculation of stable vertical derivatives using the combination of finite difference and upward continuation, case study: gravity field data of the northern area of the Jalalabad iron ore mine, Kerman province. 8(4), 287-299. https://doi.org/10.22044/jrag.2024.14025.1356
Baniamerian, J., Liu, S., & Abbas, M. A. (2018). Stable computation of the vertical gradient of potential field data based on incorporating the smoothing filters. Pure and Applied Geophysics, 175, 2785-2806. https://doi.org/https://link.springer.com/article/10.1007/s00024-018-1857-2
Bezák, V., Bielik, M., Marko, F., Zahorec, P., Pašteka, R., Vozár, J., & Papčo, J. (2023). Geological and tectonic interpretation of the new Bouguer gravity anomaly map of Slovakia. Geologica Carpathica, 74(2), 109-122. https://doi.org/10.31577/GeolCarp.2023.08
Bezák, V., Pek, J., Vozár, J., Bielik, M., & Vozár, J. (2014). Geoelectrical and geological structure of the crust in Western Slovakia. Studia Geophysica et Geodaetica, 58, 473-488. https://doi.org/10.1007/s11200-013-0491-9
Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge university press.
Evjen, H. M. (1936). The place of the vertical gradient in gravitational interpretations. Geophysics, 1(1), 127-136. https://doi.org/https://doi.org/10.1190/1.1437067
Florio, G., Fedi, M., & Pasteka, R. (2006). On the application of Euler deconvolution to the analytic signal. Geophysics, 71(6), L87-L93. https://doi.org/https://doi.org/10.1190/1.2360204
Gubbins, D. (2004). Time series analysis and inverse theory for geophysicists. Cambridge university press.
Jiang, F.-Y., Huang, Y., & Yan, K. (2012). Full gravity gradient tensors from vertical gravity by cosine transform. Applied Geophysics, 9(3), 247-260.
Kántás, K. (1959). The gravitational potential and its vertical derivatives. Geofisica pura e applicata, 44, 20-24. https://doi.org/https://doi.org/10.1007/BF01997636
Mousapour Yasoori, M., & Ebrahimzadeh Ardestani, V. (2018). Improvement of the first and second vertical gradients calculated using cosine transform. 4(2), 413-427. https://doi.org/10.22044/jrag.2017.5684.1112
Nejati Kalateh, A., & Roshandel Kahoo, A. (2013). Edge detection of potential field data using Theta maps. Iranian Journal of Geophysics, 7(1), 24-33. https://doi.org/20.1001.1.20080336.1392.7.1.3.7
Oliveira, S. P., & Pham, L. T. (2022). A stable finite difference method based on upward continuation to evaluate vertical derivatives of potential field data. Pure and Applied Geophysics, 179(12), 4555-4566. https://doi.org/https://doi.org/10.1007/s00024-022-03164-z
Oliveira, S. P., Pham, L. T., & Pašteka, R. (2024). Regularization of vertical derivatives of potential field data using Morozov's discrepancy principle. Geophysical Prospecting, 72(8), 2880-2892. https://doi.org/10.1111/1365-2478.13534
Oruç, B. (2011). Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, 168(10), 1769-1780. https://doi.org/10.1007/s00024-010-0211-0
Pašteka, R., Richter, F., Karcol, R., Brazda, K., & Hajach, M. (2009). Regularized derivatives of potential fields and their role in semi‐automated interpretation methods. Geophysical Prospecting, 57(4), 507-516. https://doi.org/https://doi.org/10.1111/j.1365-2478.2008.00780.x
Rezaie, M., Moradzadeh, A., Kalate, A. N., Aghajani, H., Kahoo, A. R., & Moazam, S. (2017). 3D modelling of Trompsburg Complex (in South Africa) using 3D focusing inversion of gravity data. Journal of African Earth Sciences, 130, 1-7. https://doi.org/10.1016/j.jafrearsci.2017.03.002
Roshandel Kahoo, A., & Anvari, R. (2024). Separation of regional-residual anomaly in 2D gravity data using the 2D singular spectrum analysis. Physics f the earth and space, 50(3), 573-594. https://doi.org/10.22059/jesphys.2024.367608.1007574
Roshandel Kahoo, A., Nejati Kalateh, A., & Salajegheh, F. (2015). Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling. Journal of Applied Geophysics, 121, 54-62. https://doi.org/10.1016/j.jappgeo.2015.07.008
Roshandel Kahoo, A., Soltani, P., & Baghzendani, H. (2025). Using a new filter with high resolution to identify the edges of anomalies in the potential field data based on the thresholding of the tilt angle of the total horizontal gradient. Iranian Journal of Geophysics. https://doi.org/10.30499/ijg.2025.470149.1616
Roy, K. K. (2007). Potential theory in applied geophysics. Springer Science & Business Media.
Tran, K. V., & Nguyen, T. N. (2020). A novel method for computing the vertical gradients of the potential field: application to downward continuation. Geophysical Journal International, 220(2), 1316-1329. https://doi.org/https://doi.org/10.1093/gji/ggz524
Wijns, C., Perez, C., & Kowalczyk, P. (2005). Theta map: Edge detection in magnetic data. Geophysics, 70(4), L39-L43. https://doi.org/10.1190/1.1988184