ارزیابی توان باد در استان کردستان

نویسنده

استادیار اقلیم‌شناسی، دانشگاه کردستان،

چکیده

در سال‌های اخیر نیروی جنبشی باد به عنوان منبعی نوین و تمام‌نشدنی از انرژی مورد توجه بسیاری از کشورها قرار گرفته است. این پژوهش با هدف بررسی مقدار توان باد در استان کردستان انجام شد. برای انجام آن از داده‌های متغیرهای سمت و تندی باد هفت ایستگاه همدید استان کردستان و همچنین 21 ایستگاه مجاور استان از زمان تأسیس ایستگاه‌های همدید تا سال 2005 استفاده شد. ابتدا داده‌های سمت و تندی باد ایستگاه‌های مورد مطالعه (28 ایستگاه همدید) به مؤلفه‌های باد مداری و نصف‌النهاری تبدیل شدند. با استفاده از این داده‌ها، مقدار باد مداری و نصف‌النهاری برای 2068 یاخته(به ابعاد تقریبی 7/3*7/3 کیلومتر مربع) در استان کردستان در هر روز به کمک میانیابی به روش کریجینگ برآورد شد. نتایج حاصل از برآورد توان باد(با استفاده از سه نوع توربین با شعاع چرخانه 10، 15 و 25 متری) نشان داد که بر اساس توربین‌های با شعاع 10 متر حداکثر می‌توان تا 170 هزار وات بر متر مربع در هر یاخته از استان انرژی تولید کرد؛ البته تنها مناطق محدودی از استان کردستان (به‌ویژه زرینه اوباتو، قروه و بیجار) توانایی تولید این مقدار انرژی را دارند. بر اساس توربین‌های با شعاع چرخانه 15 متری، تقریباً همین ناحیه می‌تواند تا 370 هزار وات بر متر مربع در هر یاخته از استان انرژی تولید کند. در نهایت با استفاده از توربین‌های با شعاع چرخانه 25 متری، می‌توان تا بیش از 1 میلیون وات بر متر مربع در هر یاخته انرژی تولید کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of wind power in Kurdistan province

نویسنده [English]

  • Bakhtiar Mohammadi
Assistant Professor, Department of Climatology, Faculty of Natural Recourses, University of Kurdistan, Iran
چکیده [English]

In recent years, the kinetic energy of wind as a source of renewable and inexhaustible energy is considered by many countries. This research aimed to evaluate the wind power in the Province of Kurdistan. In this research, direction and wind speed data of the Synoptic stations in Kurdistan (Sanandaj, Saghez, Marivan, Bane, Bijar, Ghorveh and Zarineh Aobato) and also 21 synoptic stations outside the Province, Since founding of these synoptic stations up to 2005, was used. Direction and wind speed data in the studied stations (28 stations) were converted to zonal and meridional wind components. Using these data, the zonal and meridional winds for 2068 cells (approximate dimensions 7/3 × 7/3 km²) in Kurdistan Province for all days using Kriging interpolation method was estimated. Wind power in the Province of Kurdistan was presented by the maps. The results of the wind power estimation (using three types of turbines with radius of rotors of 10, 15, and 25 m) showed that based turbines with radius of 10 meters can be up to 170 thousand Watts per square meter of energy in every cell. However, only limited areas of the Province of Kurdistan (especially Zarineh Aobato, Ghorveh and Bijar) have the ability to produce this amount of energy. For turbines of rotor of 15 meters radius, roughly the same area can be up to 370 thousand Watts per square meter per cell to produce energy in the Kurdistan Province. Finally, using turbines rotor with radius 25 meters, the harnessing energy can be more than 1 million Watts per square meter per cell. Although there is the possibility of energy production, but wind energy production in some parts of the Province of Kurdistan (large parts of Sanandaj, Marivan and Bane) may not be economically affordable. According to the estimates of wind power in Kurdistan Province, it seems that Zarineh Aobato and surrounding areas are the most appropriate place to install wind turbines. In fact, based on the estimated wind power, this region was identified as the maximum power generated for wind energy in this Province. In the next places Zarineh Aobato, some parts of the Ghorveh and Bijar also have high potential for wind energy production.

کلیدواژه‌ها [English]

  • wind speed
  • Wind direction
  • Applied climatology
  • renewable energy
  1.  

    1. آفرین‌زاد، ن.، 1388، گزارش جهانی باد در سال 2008، مهندسی زیرساخت‌ها، شمارۀ یازده، مهر 1388.
    2. استول، ر.، 1999، هواشناسی، ترجمه: سید ابوالفضل مسعودیان و همکاران، انتشارات دانشگاه اصفهان، 1392، جلد نخست، ص 229.
    3. سعیدی، د.، نعمت اللهی، ا. و عالم رجبی، ع. ا.، 1390، بررسی پتانسیل انرژی باد در استان خراسان شمالی در ایران، نشریۀ علمی پژوهشی مدیریت انرژی، شمارۀ اول، سال اول، ص 56-49.
    4. عبدلی، ح.، ساری صراف، ب. و حسینی شمعچی، ع.، 1388، امکان‌سنجی پتانسیل انرژی باد و کاربرد آن در طرح­های توسعۀ صنعتی، مطالعه موردی: استان آذربایجان شرقی، مجلۀ علمی پژوهشی فضای جغرافیایی، سال نهم، شمارۀ 28، ص 74-57.
    5. عزتیان، و. و بهیار، م. ب.، 1382، برآورد انرژی بالقوۀ باد در پهنه‌های اقلیمی مختلف ایران جهت طراحی و بکارگیری منابع پاک انرژی، چهارمین همایش ملی انرژی.
    6. کاویانی، م. ر.، 1374، توربین­های بادی و ارزیابی انرژی پتانسیل باد در ایران، فصلنامۀ تحقیقات جغرافیایی، شمارۀ 36.
    7. کرد، ب.، 1379، نقش انرژی‌های نو در تأمین انرژی روستایی در ایران، پایان‌نامۀ کارشناسی ارشد، دانشگاه تربیت مدرس، دانشکدۀ ادبیات و علوم انسانی، گروه جغرافیا.
    8. گندمکار، ا.، 1388، ارزیابی انرژی پتانسیل باد در کشور ایران، مجلۀ جغرافیا و برنامه‌ریزی محیطی، سال 20، شمارۀ پیاپی 36، شمارۀ 4، ص 100-85.
      1. Bussel, G. V. and Bierbooms, W., 2004, Course Offshore wind farm design OE 5662, Section Wind Energy Faculty Aerospace Engineering, September 2004.
      2. Alberta Environmentally Sustainable Agriculture Council. 2001, Greenhouse Gases Emissions and Renewable Energy, http://www1.agric.gov.ab.ca.
      3. Delucchi. A. M and Jacobson. M., 2011, Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies, Energy Policy 39, pp.1170–1190.
      4. Dryden, J, M., 2008, Potential climate change impacts on wind resources in Oklahoma: A Focus on future energy output, Bachelor of Science in Meteorology, The University of Oklahoma Norman, Oklahoma.
      5. Freris, L.L., 1990, Wind energy conversion systems, Prentice Hall, New York.
      6. Jacobson, M., 2012, Myths and Realities about Wind, Water, and Sun (WWS) Versus Current Fuels, September 26, 2012.
      7. Jacobson. M. and Delucchi, A, M., 2011, Providing all global energy with wind, water, and solar power, Part I: Reliability, system and transmission costs, and policies, Energy Policy 39, pp.1154–1169.
      8. Jayakumar, D., Prashanthi Devi. M., Suriyanarayanan, S and Balasubramanian, S., 2001, Wind energy potential in Tamil Nadu India؛ Prediction and mapping using GIS, Tamil Nadu. India.
      9. Jewer, P., Iqbal, M, T., Khan, M, J., 2005, Wind energy resource map of Labrador, Renewable Energy, 30: 989-1004.
      10. Keith, D., W, DeCarolis, J, F., Denkenberger, D, C., Lenschow, D, H., Malyshev. S. L, Pacala, S and Rasch, Ph, J., 2011, The influence of large-scale wind power on global climate, PNAS, vol. 101 _ no. 46 _ 16115–16120.
      11. Loxsom. F., 2007, Electric Power from Sun and Wind, AP Environmental Science: 2006–2007 Workshop Materials Special Focus: Energy and Climate Change.
      12. Manuel, L., and Nelson, L., 2002, Analysis of Time Series Data on Wind Turbine Loads http://www.ce.utexas.edu/ Prof/ Manuel/ Papers/ TREXReport_ AaronSterns. pdf.
      13. Rasmussen, D, J, Holloway, T., and Nemet, G, F., 2011, Opportunities and challenges in assessing climate change impacts on wind energy a critical comparison of wind speed projections in California, Environmental Research Letters, No. 6, doi:10.1088/1748-9326/6/2/024008.
      14. American Wind Energy Accusation. 2008, The Long-Term Climate Benefits of Significant Wind Power.