تعیین مدار هیبریدی آنی ماهواره‌های ارتفاع پایین با مشاهدات ماهواره به ماهواره

نویسندگان

1 دانشیار، دانشکدة مهندسی نقشه برداری، پردیس دانشکده های فنی دانشگاه تهران

2 دانشجوی دکتری، دانشکدة مهندسی نقشه برداری، پردیس دانشکده های فنی دانشگاه تهران

3 دانشجوی دکتری، مرکز تحقیقات ایرودینامیک، دانشگاه امام حسین

چکیده

اندازه‌گیری سه‌بعدی موقعیت، از طریق مشاهدات سیستم ماهواره‌ای ناوبری جهانی، ایدة تعیین مدار مبتنی بر مشاهدات ردیابی ماهواره به ماهواره را فراهم آورد. این روش که به روش کینماتیک موسوم است، ضعف‌هایی از جمله نویز با فرکانس بالا، مشاهدات آلوده به خطاهای فاحش و شرایط مشاهده ناکافی دارد. همچنین مدار دینامیکی به علت انطباق‌نداشتن مدل‌های نیرو با واقعیت بیرونی نمی‌تواند به عنوان مدار ایده‌آل برای پیش‌بینی استفاده شود. از سوی دیگر بیان حرکت ماهواره در قالب معادلة حرکت به کمک مدل‌های نیروهای وارد بر ماهواره، این امکان را فراهم می‌آورد تا بتوان کاستی‌های روش کینماتیک را جبران کرد. در این تحقیق، هدف محاسبة مدار آنی ماهواره‌های ارتفاع پایین به کمک ترکیب مدار کینماتیک و دینامیک، توسط فیلتر کالمن بسط‌یافته تحت عنوان مدار هیبریدی است. در روش پیشنهادی نقاط ضعف مدار به‌دست‌آمده از مشاهدات، توسط معادلة حرکت ماهواره به عنوان قید کمکی بهبود می‌یابد. همچنین امکان برآورد پارامترهای مدل دینامیکی موجب افزایش دقت مدل‌های نیرو می‌شود. نتایج دقت قابل قبولی به منظور اهداف آنی تعیین مدار ارائه می‌دهد. مطالعة موردی مشاهدات ردیابی ماهواره به ماهواره توسط ماهواره‌های GPS (مشاهدة کد P) به ماهواره‌های CHAMP و GRACE در تاریخ 13 نوامبر 2008 است که در این نمونة مشاهداتی سطح نویز مدار نهایی هیبرید در مقایسه با مدار کینماتیک به بیش از چهار برابر کاهش می‌یابد. صحت نتایج با مدار علمی پردازش پسین تولیدشده توسط مرکز تحقیقاتی علوم زمین هلموتز واقع در پتسدام مقایسه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Real-time hybrid orbit determination using satellite to satellite tracking observations

نویسندگان [English]

  • Mohammad Ali Sharifi 1
  • Masoud Abbas Hadi 2
  • Mohammad Reza Seyf 2
  • Taghi Shojayi 3
1
2
3
چکیده [English]

Three-dimensional position measurements by Global Positioning System (GPS) provide purely geometrical estimate of Low Earth Orbiters (LEOs) positions. It provides uninterrupted tracking of the LEOs in three spatial dimensions or the so-called kinematic orbit. This solution relies heavily on the observations. High frequency observation noise, outlying observations and low redundancy number of measurements are the main obstacles to the purely observed or the so called kinematic orbit. on the other hand dynamic orbit is not ideal orbit due to the mis-modeling of the assumed forced filed. Introducing the equation of motion in terms of a dynamic process helps us to overcome the aforementioned problems to a great extent. Therefore the equation of satellite motion based on the forces acting on a satellite provides dynamic solution which helps to fix and reduce the stated problem of purely geometric solution. Combination of both the kinematic and dynamic methods of state vector determination is used with carefully selected relative weighting in the hybrid methods. At first glance, the dynamic orbit adjusts the fewest parameters, preserving maximum data strength, and yielding the lowest formal error, error due to observations noise, even in low observation condition. In the other side, the dynamic orbit can suffer from a large systematic error due to inefficient and imperfect introduced models which produce accumulative and frequent adverse effects on the dynamic orbit. The kinematic orbit eliminates modeling error, but the orbit is determined entirely from the observations, data strength is depleted, and the formal error due to observations can grow largely. The hybrid orbit optimally combines the two techniques to achieve the desired output. In other words, the final goal of hybrid methods will determine what is the optimal combination which leads us to the lowest overall state vector errors and estimated dynamic models parameters. If the vector of parameters and observations are related linearly, several powerful linear estimators can be applied for estimation of the unknown parameters. Linearization of the nonlinear models is the most frequently used scheme for using theoretically and computationally well-developed linear estimators Orbit determination problem is well-known example of the highly nonlinear engineering problems. In general, observations and augmented equation of motion are nonlinear with respect to time and parameters. Because of highly nonlinearity conditions in orbit determination problem, Extended Kalman Filter (EKF) has been chosen as appropriate filter rather than Standard Kalman filter. For numerical evaluation of the proposed method, GPS, P-code observations of the CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery And Climate Experiment (GRACE) twin satellites have been used. The proposed method will be applicable for phase observations as well as code observations. On the other side, capability of more precise code observations of upcoming global navigation satellite system like Galileo, was another motivation for choosing code observations. The final results are compared with the Rapid Science Orbits of CHAMP and GRACE twin satellites, disseminated by Geo Forschungs Zentrum Helmholtz center Potsdam. High quality of the hybrid solution proves the efficiency of the proposed method and the proposed method achieves nearly 4 times better noise level than the purely kinematic method in the aforementioned case study.

کلیدواژه‌ها [English]

  • LEOs
  • SST
  • Real-time orbit
  • Kalman filtering and Hybrid orbit
 مسعود عباس هادی، تعیین مدار به روش کینماتیک بر اساس مشاهدات کد و فاز موج حامل GPS، رسالة کارشناسی ارشد 1390.  
Beutler G, Brockmann E, GurtnerW, Hugentobler U, Mervart L, Rothacher M, Verdun A 1994. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS) theory and initial results. Manuscr Geod 19367–386.
Bock H, Hugentobler U and Beutler G 2001, Kinematic Orbit determination for Low Earth Orbiters (LEOs). IAG 2001 Scientific Assembly, Budapest, Vistas for Geodesy in the New Millenium, (Eds) Adam, J. and Schwarz, K. P., Springer IAG, 125, 322–328.
Bock H, Hugentobler U and Beutler G 2003, Kinematic and Dynamic Determination of Trajectories for low Earth Satellites Using GPS, in First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber et al., pp. 65–69, Springer, Berlin, ISBN 3-540-00206-5.
Dach R., Hugentobler U, Fridez P and Meindl M 2007, Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern, Switzerland.
Jaggi A, Hugentobler U, Bock H and Beutler G 2007, Precise Orbit Determination for GRACE Using Undifferenced or Doubly Differenced GPS Data, Advances in Space Research, 39(10), 1612–1619.
McCarthy, D.D. and G. Petit 2003, IERS Conventions (2003), IERS Technical Note No. 32, Central Bureau of IERS, Observatoire de Paris, France.
Mikhail E.M 1976, Observations and Least Squares. Dun Donnelley. ISBN 0-7002-2481-5.
Montenbruck O and Eberhard G 2000, Satellite Orbits Models, Methods and Applications. New York Springer-Verlag.
Sharifi, M.A 2004, Satellite Gradiometry Using a Pair Satellite, Submitted in conformity with the fulfillment of conditions to commence the PhD studies Department of Geodesy and GeoInformatics University of Stuttgart.
Sharifi M.A, Hadi M.A 2010, Kinematic Precise Orbit Determination for Low Earth Orbit satellites with HL-SST observations. Journal of Geospatial Engineering.
Seeber G. 2003, Satellite Geodesy: Fundations, Models and applications. Walter de Gruyter Berlin.
Svehla D and Rothacher M 2002a, Kinematic Orbit Determination of LEOs Based on Zero- or Double-Difference Algorithms Using Simulated and Real SST Data, IAG 2001 Scientific Assembly, Budapest, Vistas for Geodesy in the New Millenium, (Eds) Adam J. and Schwarz, K. P., Springer IAG, 125, 322–328.
Svehla D and Rothacher M 2003b, Kinematic and reduced-dynamic precise orbit determination of low earth orbiters, Advances in Geosciences, 1 47–56.