تخمین پروفیل سرعت موج برشی با استفاده از وارون‌سازی همزمان امواج میکروترمور و شکست مرزی با استفاده از بهینه‌سازی الگوریتم ژنتیک چند هدفه

نویسندگان

1 Tabriz-Iran

2 استادیار گروه عمران، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران

3 استادیار دانشکده مهندسی معدن، دانشگاه صنعتی سهند تبریز، ایران

چکیده

مطالعه و مدلسازی ویژگی‌های سرعتی مناطق نزدیک سطح زمین به‌دلیل ارتباط مستقیم آن با تأسیسات شهری واقع برروی آن، از لحاظ ژئوتکنیکی و مهندسی زلزله از اهمیت خاصی برخوردار است. در سال‌های اخیر میکروترمور شکست مرزی (ReMi) برای تخمین منحنی‌های پاشش و در نهایت مدلسازی سرعت موج برشی، به-دلیل هزینه پائین و سرعت بالای برداشت داده‌ها مورد استقبال قرار گرفته است. اما مشکل اساسی در پردازش این داده‌ها وارون‌سازی منحنی پاشش جهت تخمین سرعت امواج برشی است. در مقاله حاضر سعی شده است با پیشنهاد وارون‌سازی همزمان امواج ReMi (امواج ری‌لی) و امواج انکساری (زمان سیر امواج) با روش بهینه‌سازی الگوریتم ژنتیک چند هدفه و استفاده از مفهوم جبهه پارتو تخمینی از ساختار سرعت موج برشی ارائه شود. برنامه الگوریتم مذکور در محیط متلب نوشته شده است. روش پیشنهاد شده در ابتدا به‌وسیله مدل‌های مصنوعی مورد ارزیابی قرار گرفت و در ادامه برای ارزیابی بیشتر روی داده‌های تجربی اعمال شد. بدین منظور یک ایستگاه در جنوب تبریز،‌ که بیشتر در برگیرنده واحدهای سنگی میوسن-پلیوسن و رسوبات آذرآورای هستند، برداشت شد. نتایج به‌دست آمده با استفاده از الگوریتم پیشنهاد شده با روش وارون‌سازی منفرد داده ReMi با استفاده از روش وارون-سازی گروه ذرات مقایسه شد. نتایج وارون‌سازی به‌دست آمده، در مورد مدل‌های مصنوعی و هم داده‌های تجربی بیانگر عملکرد قابل قبول الگوریتم پیشنهاد شده، به‌عنوان یک روش مؤثر در وارون‌سازی همزمان داده‌های ژئوفیزیکی، در مقایسه با سایر روش‌های مرسوم می‌باشد. این الگوریتم یک راهکار مناسب در کاهش عدم یکتایی نتایج وارون‌سازی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of Vs profiling by joint inversion of Refraction Microtremor and Seismic Refraction data using GA multi-objective optimization approach

نویسندگان [English]

  • Rashed Poormirzaee 1
  • Ahmad Zarean 2
  • rasoul hamidzade moghadam 3
1 Tabriz-Iran
2
3
چکیده [English]

It is very important to study and simulate S-wave structure for near surface (alluvium parts, in particular) owing to its direct relationship to urban facilities in geotechnical and earthquake engineering studies. So, in seismic microzonation, the first step is to study and identify S-wave pattern in alluvium in order to categorize different parts of cites according to S-wave velocity. Current techniques of estimating shallow shear velocities for assessment of earthquake site response are too costly for use at most construction sites. They require large sources to be effective in noisy urban settings, or specialized independent recorders laid out in an extensive array. Recently, refraction microtremor (ReMi) data have been frequently used for estimating of dispersion curves and simulating velocity of S-waves, because ReMi method is fast and cheap. However, inversion is the main problem in processing ReMi data for estimating velocity of S-waves. With the development of computer science, emergence of single-and multi-objective optimization techniques and inspiration of science from nature, an opportunity has been provided for decrease in non-uniqueness of inversion and finding the best possible solution. In this study, the joint inversion of microtremor and seismic refraction data was proposed using multi-objective Genetic Algorithm optimization and Pareto front concept for estimating S-wave velocity. After programming the multi-objective Genetic algorithm in Matlab, its efficiency was investigated by synthetic models and real datasets. Real datasets were obtained from 1 stations in south part of Tabriz (near Elgoli Road) that contain Miocene –Pliocene and pyroclastic bedrocks. For actual dataset we used Refraction microtremor (ReMi) as a passive method for achieve Rayleigh wave and seismic refraction data as an active method for getting travel time. For ReMi and seismic refraction data acquisition, the same layout can easily provide both P-wave travel times and surface wave dispersion curves if the sampling parameters are properly designed to satisfy the requirements of the two techniques. In current study ReMi and seismic refraction method was performed with using an OYO 24-channal seismograph and 4.5Hz and 28Hz geophones with a receiver spacing of 5m. for ReMi, Unfiltered 17 second records were collected at study site. Also in this study, resistivity data, as auxiliary information, are used. Resistivity method can provide information about bed rock and water table in study area. For this goal, resistivity measurements were carried out by using high-resolution RESECS resistivity meter system. In this study Wenner array, with 32 electrodes (2m unit electrode spacing), for measurements of 1-D resistivity imaging profile is used. For evaluation of proposed joint inversion algorithm, the results were compared with single inversion of ReMi data by Particle Swarm Optimization (PSO) algorithm. with Using joint inversion algorithm, a three layer subsurface model was found, which the first layer velocity is 321m/s and its thickness is 5.8m, second layer velocity is 365m/s and its thickness is 4.6m and last layer velocity is 547m/s.. The results of inversion in both synthetic and real dataset proved the reliability of proposed method, as a powerful technique for joint inversion, in comparison to current methods. . Also by Pareto concept the quality of inversion procedure can be easily detected. Because symmetry of Pareto front is strongly depends to accuracy of estimations. By using joint inversion algorithm we can achieve to a more correct Vs structure and decrease the non-uniqueness of Rayleigh wave inversion.

کلیدواژه‌ها [English]

  • Joint inversion
  • Microtremor
  • seismic refraction
  • Multi-Objective Optimization
  • Shear wave velocity
  • Genetic Algorithm
موسوی بفروئی، س.ح.، میرزائی، ن.، شعبانی، ا. و اسکندری، م.، 1393، پهنه بندی خطر زمین‌لرزه در ایران و برآورد مقادیر بیشینه شتاب برای مراکز استان‌ها، م. فیزیک زمین و فضا، 40(4)، 15-38.
فریدی، م. و خدابنده‌‌لو، ع.، 1390، نقشه زمین‌شناسی 25000/1 تبریز، سازمان زمین‌شناسی کشور، ویرایش سوم.
مهندسین مشاور تهران پادیر، مطالعات ریزپهنه‌بندی ژئوتکنیک لرزه‌ای شهر تبریز، 1388، سازمان مسکن و شهرسازی آذربایجان شرقی، جلدششم.
 
Apostolidisa, P., Raptakis, D., Roumelioti, Z. and Pitilakis, K., 2004, Determination of S-wave velocity structure using microtremors and SPAC method applied in Thessaloniki (Greece), J. Soil Dynamics and Earthquake Engineering, 24, 49-67.
Bouchedda, A., Chouteau, M., Binley, A. and Giroux, B., 2012, 2-D joint structural inversion of cross-hole electrical resistance and ground penetrating radar data, J. of Applied Geophysics, 78, 52-67.
Coello Coello, C. A., 2002, MOPSO: a proposal for multiple objective particle swarm optimizations, IEEE, doi: 0-7803-7282-4/02.
Dalmoro, G., 2010, Insights on surface wave dispersion and HVSR: joint analysis via Pareto optimality, J. of Applied Geophysics, 72, 129-140.
Dalmoro, G. and Pipan, M., 2007, Joint inversion of surface wave dispersion curves and reflection travel times via multi-objective evolutionary algorithms, J. of Applied Geophysics, 61, 56-81.
Deb, K., Agrawal, S., Pratab, A. and Meyarivan, T., 2002, A fast and elitist multi objective genetic algorithm: NSGA–II, IEEE transactions on volutionary computation, 6, 182-197.
Foti, S., 2012, Surface wave testing for geotechnical characterization, 4th International Conference on Geotechnical and Geophysical Site Characterization Recife, Brasil, September.
Gallardo, L. and Meju, M. A., 2003, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data, Geophysical Research Letters, 30, 1658-1670.
García-Jerez, A., Luzón, F., Navarro, M. and Pérez-Ruiz, J., 2008, determination of elastic properties of shallow sedimentary deposits applying a spatial autocorrelation method, J. Geomorphology, 93,74-88.
Gardner, G. F., Gardner, L. W. and Gregory, A. R., 1974, Formation velocity and density the diagnostic basic for stratigraphic trap, Geophysics, 39, 770-780.
Kennedy, J. and Eberhart, R. C., 1995, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks (Perth, Australia), Piscataway, pp 1942-1948.
Kozlovskaya, E., 2001, Theory and application of joint interpretation of multimethod geophysical data, Ph.D. dissertation, Univ. of Oulu, Finland.
Louie, J. N., 2001, Faster, better: shear wave velocity to 100 meters depth from refraction Microtremor arrays, Bull. Seism. Soc. Am., 91 347-364.
Marler, R. T. and Arora, J. S., 2004, Survey of multi-objective optimization methods for engineering, Struct Multidisc Optim, 26, 369-395.
Naudet, V., Fernández Martínez, J. L., García Gonzalo, E. and Fernández, A., 2008, Estimation of water table from self-potential data using particle swarm, Annual Meeting SEG, 1203-1207.
Okada, H., 2006, Theory of efficient array observations of microtremors with special reference to the SPAC method, Exploration Geophysics, 59, 73-85.
Poormirzaee, R., Hamidzadeh, R. M. and Zarean, A., 2014, Inversion seismic refraction data using particle swarm optimization: a case study of Tabriz, Iran, Arabian Journal of Geosciences, doi: 10.1007/s12517-014-1662-x.
Poormirzaee, R., Hamidzadeh, R. M. and Zarean, A., 2015, The application of PSO to joint inversion of microtremor Rayleigh waves dispersion curves and refraction travel times, Journal of Seismic Exploration, (In press).
Rangaiah, G. P., 2009, Advances in process systems engineering, World Scientific Publishing Co., London.
Res2Dinv for Windows XP/Vista/7 manual, version 3.59, www.geoelectrical.com, Jan. 2014.
SeisImager/SWTM Manual, Windows software for analysis of surface waves, version 3.0, ftp://geom.geometrics.com/pub/, October 2009.
Shi, Y. and Eberhart, R. C., 1998, A modified particle swarm optimizer proc. of IEEE In. Con. on Evolutionary Computation Anchorage, AK USA, 69-73.
Song, X. H., Tang, L., Lv, X., Fang, H. and Gu, H., 2012, Application of particle swarm optimization to interpret Rayleigh wave dispersion curves, J. of Applied Geophysics, 84, 1-13.
Tokeshi, J. C., Karkee, M. B. and Sugimura, Y., 2006, Reliability of ayleigh wave dispersion curve obtained from f–k spectral analysis of microtremor array measurement, Soil Dynamics and Earthquake Engineering, 26, 163-174.
Vozoff, K. and Juppf, D., 1975, Joint inversion of geophysical data, Geophys. J. R. astr. Soc., 42, 977-991.
Yang, X. S., 2010, Engineering optimization: an introduction with etaheuristic applications, Published by John Wiley & Sons, New Jersey.
Zitzler, E. and Thiele, L., 1999, Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach, IEEE Transactions on Evolutionary Computation, 3, 257-271.