ارزیابی و مقایسه آماری داده‌های بارش TRMM و GPCC با داده‌های مشاهده‌ای در ایران

نویسندگان

1 دانشگاه تهران

2 پژوهشکده حفاظت خاک و آبخیزداری

چکیده

پژوهش حاضر با هدف ارزیابی دقت داده‌های بارش سنجنده TRMM-3B43 و داده‌های شبکه‌بندی شده GPCC در برآورد بارش واقعی ایستگاه‌های همدیدی کشور به انجام رسیده است. برای این منظور داده‌های ماهانه بارش 46 ایستگاه همدیدی ایران با پراکنش مناسب در سطح کشور، داده‌های بارش سنجنده TRMM و داده‌های بارش GPCC برای دوره مشترک آماری 2010-1998 از تارنماهای مربوطه دریافت و استفاده شد. دقت مکانی داده‌های سنجنده TRMM و GPCCبه ترتیب 25/0×25/0 و 5/0×5/0 درجه جغرافیایی است. برای ارزیابی دقت این داده‌ها از آماره‌های ضریب تعیین(r2)، مجذور میانگین مربع خطا (Rmse)، شیب خط(Slope)، اریبی(Bias) و ضریب کارایی مدل(EF) استفاده شد. مقایسه‌های آماری انجام شده نشان داد اگرچه داده‌های TRMM در برخی مناطق مانند ایستگاههای سواحل خلیج فارس و شمال غرب ایران و بصورت موردی برای ایستگاه‌هایی مانند تهران بارش را بیشتر و یا کمتر از مقدار واقعی برآورد می‌کند، اما در مجموع برآورد بارش به وسیله TRMM در بیشتر ایستگاههای مورد مطالعه از دقت خوبی برخوردار است. ارزیابی داده‌های شبکه بندی شده GPCC نیز نتایج مشابه‌ای را بدست داد که بیانگر دقت مناسب داده‌های GPCC در سطح ایران است. بیشترین میزان ضریب همبستگی برای مناطق شمال شرق، غرب میانه و شمال غرب ایران بدست آمد که دلیل آن تراکم زیاد ایستگاههای باران سنجی در این مناطق می‌باشد که GPCC از آن برای تولید این داده‌ها بهره برده است. بررسی توزیع زمانی بارش ماهانه TRMM و GPCC در مقایسه با داده‌های مشاهده‌ای نیز نشان داد که هر دو این داده‌ها به خوبی روند تغیرات بارش ماهانه داده‌های مشاهده‌ای را شبیه سازی می‌کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and statistically comparison of TRMM and GPCC datasets with observed precipitation in Iran

نویسنده [English]

  • morteza miri 1
1
2
چکیده [English]

The lack of reliable and updated precipitation datasets is the most important limitation in the study of many climatological and hydrological subjects, including climate change and temporal variability of precipitation in many data sparse areas around the globe. This is particularly valid for Iran where vast areas of central-eastern country that host the Iranian deserts, suffer from an inadequate network of rain-gage stations, required for climatological studies. The highlands of the mountainous regions of western and northern Iran have the same problem and limited representative stations are available for high elevation areas of these regions. One of solution to overcome this obstacle is to use available gridded precipitation datasets that have proved their representativeness for many different parts of the world. Among many available precipitation datasets are the Global Precipitation Climatology Center (GPCC) and theTropical Rainfall Measuring Mission (TRMM) that have been widely used in many researches, indicating their accurate estimation of precipitation values and intera-annual variation for the regions studied. The GPCC is a gage based dataset that is routinely creating through interpolation of worldwide precipitation stations combined with satellite records, whereas the TRMM is a purely remote sensed data developed by joint collaboration between NASA and the Japan Aerospace Exploration Agency (JAXA). The representativeness and performance of the GPCC and TRMM-3B43V7 precipitation datasets in estimating precipitation amounts at the locations of 46 Iranian synoptic stations distributed across the country is herein examined. Spatial resolutions of TRMM-3B43V7 and GPCC datasets used in this study are respectively 0.25 × 0.25 and 0.5 × 0.5 latitude and longitude. For each station, the closest grid point of each of the datasets to the station coordinates were chosen for statistically comparison analysis. To evaluate the performance of these datasets in comparison with the observed precipitation records at the considered locations we have used R squared, the Nash–Sutcliffe model efficiency coefficient, RMSE, Bias, B slope of the regression and the standardized RMSE indicators. The performances of the datasets were also graphically represented through scatter plots of the established regression between the observation and each of the two used datasets. The results of the statistical indicators were represented through plotting the indicators over the map of Iran to ease revealing spatial tendency of the indicators and explaining the possible geographical role in controlling the spatial variation of the indicators. The results revealed that both GPCC and TRMM-3B43V7 perform well in majority of the studied stations with strong correlation coefficients. However, it was found that the TRMM-3B43V7 underestimates precipitation in some stations located in the coastal areas of the Caspian Sea as well as in some stations along the Persian Gulf and the Oman seas, indicating that TRMM-3B43V7 is somewhat inefficient in adequately estimating precipitation in the coastal areas; which is very likely due to being unable to remove the effect of sea atmosphere interaction in stations nearby the seas. Contrarily, in some locations mostly situated in northwestern and northeastern mountainous areas of the country the TRMM-3B43V7 moderately over estimates the observed precipitation. Similarly, the GPCC well estimates precipitation in almost all stations with very high correlation coefficient and Nash–Sutcliffe model efficiency coefficient. Similar to TRMM-3B43V7, again it was found that the GPCC underestimates precipitation in most stations located along the coastal areas of the Caspian Sea. As for TRMM-3B43V7, the over-estimations of GPCC are mostly observed in northwestern Iran which is very likely due to not incorporating enough stations from high elevation areas of western Iran by the GPCC. On the whole, the results indicate that both datasets perform well in most locations of Iran and can be confidentially used in climatological and hydrological studies with or without the observation data. The results also indicate that the GPCC perform better in areas that share a denser network of stations with GPCC and vice versa. However, the very good results achieved with TRMM-3B43V7 that are completely independent from the observation indicates a promising future in having much improved remotely sensed precipitation records that well match the observed precipitation in very remote areas having no rain gages.

کلیدواژه‌ها [English]

  • Precipitation
  • TRMM
  • GPCC
  • statistical indicators
  • Iran
حجازی‌‌زاده، ز.، علیجانی، ب.، ضیائیان، پ.، کریمی، م. و رفعتی، س.، 1391، ارزیابی بارش ماهواره‌‌‌‌‌ای 3B43 و مقایسة آن با مقادیر حاصل از تکنیک درون‌یابی کریجینگ، سنجش از دور و GIS ایران، 4(3)، 49-64.
دارند، م.، ظرافتی، ه.، کفایت مطلق، ا.ر. و سمندر، ر.، 1393، مقایسة بین پایگاه‌‌های داده‌های جهانی و منطقه‌‌‌‌ای بارش با پایگاه بارش اسفزاری و ایستگاهی ایران‌زمین، تحقیقات جغرافیایی، 30(2)، 65-84.
مسعودیان، س. ا.، رعیتت‌پیشه، ف. و کیخسروی کیانی، م. ص.، 1393، معرفی و مقایسة پایگاه‌‌های داده بارشی TRMM و اسفزاری، م. ژئوفیزیک ایران، 8(4)، 15-31.
 
Chappell, A., Renzullo, L. J. L., Raupach, T. T. H. and Haylock, M., 2013, Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia, J. Hydrol., 493, 105-114, doi:10.1016/j.jhydrol.2013.04.024.
Chokngamwong, R. and Chiu, L., 2008, Thailand daily rainfall and comparison with TRMM products, J. H. Geomorphol, 9(2), 256-266.
Collischonn, B., Collischonn, W. and Tucci, C. E., 2008, Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates, J Hydrol, 207-216.
Conti, F., Hsu, K., Noto. L. V. and Sorooshian, S., 2014, Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea, Atmos. Res., 138, 189-204.
Dinku, T., Chidzambwa, S., Ceccato, P., Connor, S. J. and Ropelewski, C. F., 2014, Validation of highresolution satellite rainfall products over complex terrain, Int. J. Remote Sens., 29, 4097-4110.
Feidas, H., 2010, Validation of satellite rainfall products over Greece, Theor Appl Climatol, 99, 193-216.
Fu, Y., Xia, J., Yang, W., Xu, B., We, X., Chen, Y. and Zhang, H., 2014, Assessment of multiple precipitation products over major river basins of China, Theor Appl Climatol, 1-12.
Gairola, R. M., Prakash, S. and Pal, P. K., 2015, Improved rainfall estimation over the Indian monsoon region by synergistic use of Kalpana-1 and rain gauge data, Atmós, 28, 51-61.
Haigen, ZH., Shengtian, Y., Zhiwei, W., Xu, ZH., Ya, L. and Linna, W., 2015, Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China, J. Geogr. Sci, 25, 177-195.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Stocker, E. F. and Wolff, D. B., 2007, The TRMM Multi-satellite precipitation analysis: quasi-global, multi-year, Combined-Sensor Precipitation, J. Hydrometeor, 8, 33-55.
Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J. and Kawamoto, H., 2010, Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran, Ad in Geo., 25, 119-125.
Jeniffer, K., Su, ZH., Woldai, T. and Maathuis, B., 2010, Estimation of spatial–temporal rainfall distribution using remote sensing techniques: a case study of Makanya catchment, Tanzania, Intl J App Earth Observ Geoinform. Ens., 12(1), 90-99.
Kalinga, O. A. and Gan, T. Y., 2010, Estimation of rainfall from infrared-microwave satellite data for basin-scale hydrologic modeling, Hydrol. Process, 24, 2068-2086.
Katiraie-Boroujerdy, P. S., Nasrollahi, N., Hsu, K. L. and Sorooshian, S., 2013, Evaluation of satellite-based precipitation estimation over Iran, J. Arid Environ. 97, 205-219.
Liu, J., Duan, Z., Jiang, J. and Zhu, A.X., 2014, Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China, Adv Meteorol, 9, 1-14.
Li., Zh., Yang, D. and Hong, Y., 2013, Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River, J. Hydrol, 500, 157-169.
Mishra, A. K., Gairola, R. M., Varma, A. K. and Agarwal, V. K., 2011, Improved rainfall estimation over the Indian region using satellite infrared technique, Adv Space Res, 48 , 49-55.
Moazami, S., Golian, S., Kavianpour, M. R.and Hong, Y., 2013, Comparison of PERSIANN and V7 TRMM multi-satellite precipitation analysis (TMPA) products with rain gauge data, Int. J. R. Sens, 34(22), 8156-8171.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L. Harmel, R. D. and Veith, T. L., 2007, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the ASABE, 50(3), 885-900.
Ochoa, A., Pineda, L., Crespo, P. and Willems, P., 2014, Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific–Andean region of Ecuador and Peru, Hydrol. Earth Syst. Sci., 18, 3179-3193.
Pereira, M., Dutra, E. and Viterbo, P., 2011, Evaluation of global precipitation data sets over the Iberian Peninsula, J of Geo Res., 116, 1-16.
Prigent, C., 2010, Precipitation retrieval from space, C. R. Geosci., 380-389.
Raziei, T., Bordi, I. and Pereira, L. S., 2011, An application of GPCC and NCEP/NCAR datasets for drought variability analysis in Iran, Water Resour Manage, 25, 1075-1086.
Raziei, T., Daryabari, J., Bordi, I., Modarres, R. and Pereira, L. S., 2014, Spatial patterns and temporal trends of daily precipitation indices in Iran, Clim. Change, doi 10.1007/s10584-014-1096-1.
Raziei, T., Mofidi, A., Santos, J. A. and Bordi, I., 2012, Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation, Int J. Climatol., 32, 1226-1237.
Raziei, T. and Pereira, L. S., 2013, Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets, Agric. Water Management, 126, 104-118.
Rozante, J. R., Moreira, D. S.,Gustavo, L., and Vila, D. A., 2010, Combining TRMM and surface observations of precipitation: technique and validation over South America, W. A. F, 3(25), 885-894.
Rudolf, B. and Schneider, U., 2005, Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations, in: proceedings of the 2nd workshop of the international precipitation working group IPWG, Monterey October 2004, EUMETSAT, ISBN 92-9110-070-6, ISSN 1727-432X, 231-247.
Schneider, U., Fuchs, T., Meyer-Christoffer, A. and Rudolf, B., 2008, Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publication (http://www.dwd.de), 1-12.
Seyyedi, H., 2010, comparing satellite derived rainfall with ground based radar for North-Western Europe, Thesis for the degree of Master, International Institute for Geo-Information Science and Earth Observation, Netherlands.
Skok, G., Zagar, N., Honzak, L., Zabkar, R., Rakovec, J. and Ceglar, A., 2015, Precipitation intercomparison of a set of satellite and raingauge-derived datasets, ERA Interim reanalysis, and a single WRF regional climate simulation over Europe and the North Atlantic, Theor Appl Climatol, doi 10.1007/s00704-014-1350-5, 1-16.
Suk Han, W., Burian, S. J. and Shepherd, J. M., 2011, Assessment of satellite-based rainfall estimates in urban areas in different geographic and climatic regions, Nat Hazards, 56(3), 733-747.
Tan, M. L., Ibrahim, A. L., Duan, ZH., Cracknell, A. P. and Chaplot, V., 2015, Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia, Remote Sens, 7,1504-1528.
Tarruella, R. and Jorge, J., 2003, Comparison of three infrared satellite techniques to estimate accumulated rainfall over the iberian peninsula, Int. J. Climatol., 23, 1757-1769.
Wagner, P. D., Finer, P., Wilken, F., Kumar, SH. and Schneider, K., 2012, Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions, J Hydrol, 464, 388-400.