مطالعۀ عددی اثر غیرمستقیم هواویزها بر تابش طول موج کوتاه و بلند: مطالعۀ موردی

نویسنده

استادیار، گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران، ایران

چکیده

هواویزها از طریق تغییر تعداد و اندازۀ قطرک‌های ابر، اثرهای پیچیده‌ای بر خواص تابشی ابرها دارند که تعادل تابشی زمین و در نتیجه دمای هوا را تغییر می‌دهند. با استفاده از آزمایش‌های عددی، اثر غیرمستقیم هواویزها بر تابش طول موج کوتاه، بلند و خالص برای یک سامانۀ ابر همرفتی مورد مطالعه قرار گرفته است. برای این منظور، سه آزمایش عددی (مرجع، پاک و آلوده) با غلظت‌های متفاوتی از هواویزها و استفاده از مدل WRF و به‌کارگیری یک طرحوارۀ خردفیزیک کپّه‌ای دو مؤلفه‌ای اجرا شد. برای آزمایش مرجع، غلظت هواویزها از شبیه‌سازی‌های جهانی مدل GOCART استخراج شد، درحالی‌که در آزمایش‌های پاک و آلوده، غلظت هواویزها به 2/0 و 5 برابر غلظت آن‌ها در آزمایش مرجع تغییر یافت. در آزمایش آلوده افزایش غلظت هواویزهایی که به عنوان هسته‌های میعان عمل می‌کنند، باعث افزایش سپیدایی ابر می‌شود؛ بنابراین تابش طول موج کوتاه کمتری به سطح زمین می‌رسد. در مقابل، در آزمایش پاک کاهش غلظت هواویزها، کاهش سپیدایی ابر را در پی دارد؛ بنابراین تابش طول موج کوتاه بیشتری به سطح زمین می‌رسد. برخلاف تفاوت قابل ملاحظۀ واداشت تابشی طول موج کوتاه ابر، تغییر در تعداد و اندازۀ هسته‌های میعان ابر، تأثیر اندکی بر واداشت تابشی طول موج بلند ابر می‌گذارد، به نحوی که واداشت تابشی خالص ابر، سرمایش زمین- جوّ برای شرایط آلوده است. مقایسۀ دمای هوا در نزدیکی سطح زمین نشان داد که افزایش و کاهش سپیدایی ابر در آزمایش‌های آلوده و پاک، به ترتیب کاهش و افزایش دمای هوای سطحی را در پی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical investigation of aerosol indirect effects on shortwave and longwave radiation: A case study

نویسنده [English]

  • Omid Alizadeh-Choobari
Assistant Professor, Space Physics Department, Institute of Geophysics, University of Tehran
چکیده [English]

Through modifying the number concentration and size of cloud droplets, aerosols have complex impacts on radiative properties of clouds, which consequently change the radiation balance of the Earth, and modify the atmospheric air temperature. By conducting numerical experiments for a mid-latitude cloud system in April, the indirect effects of aerosols on shortwave and longwave radiation, and subsequent impacts on the near-surface air temperature are investigated over Tehran. To this end, three numerical experiments (control, clean and polluted) with initial identical dynamical and thermodynamic conditions, but different cloud-nucleating aerosol concentrations were conducted using the Weather Research and Forecasting (WRF) model. Simulations were conducted over three nested domains with two-way interactions (nesting ratios: 1:3:3; horizontal resolutions: 21, 7 and 2.333 km). A two-moment aerosol-aware bulk microphysical scheme, recently developed, discussed and tested by Thompson and Eidhammer (2014), was used. In the control experiment that represents conditions of the current era in terms of the aerosol number concentrations, concentrations of atmospheric aerosols were derived from 7-yr global simulations of the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model which include mass mixing ratios of sulfate, dust, black carbon (BC), organic carbon (OC), and sea salt. Hygroscopic aerosol number concentrations were reduced to one-fifth in the clean experiment, and increased by a factor of 5 in the polluted experiment. The meteorological initial and lateral boundary conditions in the three experiments were derived from the National Center for Environmental Prediction final analysis (NCEP/FNL) data at 1˚ horizontal resolution and 6 h temporal intervals. Results indicate that increasing (decreasing) cloud-nucleating aerosol concentrations in the polluted (clean) experiment is associated with more (less) numerous cloud droplets of overall smaller (larger) size. Indeed, mean cloud droplet number concentrations (effective radius of cloud droplets) in cloudy grid points averaged over the innermost domain and during the simulation period were found to be approximately 46, 158 and 417 cm-3 (8.5, 6.1 and 5.2 μm) in the clean, control and polluted experiments, respectively. Thus, the total droplet cross-sectional area of cloud droplets increases in the polluted experiment, leading to an enhancement in the shortwave cloud radiative forcing (or cloud albedo), such that less shortwave radiation reaches to the Earth surface. In contrast, the total droplet cross-sectional area of cloud droplets decreases in the clean experiment, leading to a reduction in shortwave cloud radiative forcing (or cloud albedo). In contrast to the significant changes in the shortwave cloud radiative forcing by aerosols, results indicate that changing the number and size of cloud condensation nuclei in the polluted and clean experiments has little impact on longwave cloud radiative forcing. Values of shortwave and longwave cloud radiative forcing indicate that as the positive longwave cloud radiative forcing in all experiments are nearly half of the negative shortwave cloud radiative forcing, clouds have an overall cooling effect on the climate system, counteracting the warming caused by increases in concentrations of the atmospheric greenhouse gases. Comparing the near-surface air temperature of the three experiments reveals that the enhancement of cloud albedo in the polluted experiment leads to a reduction in the near-surface air temperature, while reduction of cloud albedo in the clean experiment leads to the enhancement of the near-surface air temperature.

کلیدواژه‌ها [English]

  • Aerosol indirect effects
  • Two-moment bulk microphysical scheme
  • Cloud condensation nuclei
  • Cloud albedo
Albrecht, B. A., 1989, Aerosols, cloud microphysics, and fractional cloudiness. Science 245 (4923), 1227–1230.
Alizadeh-Choobari, O. and Gharaylou, M., 2017, Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation. Atmos. Res. 185, 53–64.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M. and Silva-Dias, M. A. F., 2004, Smoking rain clouds over the Amazon. Science 303 (5662), 1337–1342.
Arakawa, A., 2004, The cumulus parameterization problem: Past, present, and future. J. Clim. 17 (13), 2493–2525.
Colarco, P., Silva, A. d., Chin, M. and Diehl, T., 2010, Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth. J. Geophys. Res. 115, D14207.
Collins, W. D., Conant, W. C. and Ramanathan, V., 1994, Earth radiation budget, clouds, and climate sensitivity, in: The chemistry of the Atmosphere: Its Impact on Global Change, edited by: J. G. Calvert, pp. 207-215. Blackwell Scientific Publishers, Oxford, UK.
Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46 (20), 3077–3107.
Fan, J., Leung, L. R., Rosenfeld, D., Chen, Q., Li, Z., Zhang, J. and Yan, H., 2013, Microphysical effects determine macrophysical response for aerosol impacts on deep convective clouds. Proc. Natl. Acad. Sci. USA 110 (48), E4581–E4590.
Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li, Z., Martins, V. J. and Ovchinnikov, M., 2009, Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. 114, D22206.
Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O. and Lin, S. J., 2001, Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 106 (D17), 20255–20273.
Hong, S. Y., 2010, A new stable boundary layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc. 136 (651), 1481–1496.
Hong, S. Y., Noh, Y. and Dudhia, J., 2006, A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134 (9), 2318–2341.
Kain, J. S., 2004, The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 43 (1), 170–181.
Kaufman, Y. J. and Koren, I., 2006, Smoke and pollution aerosol effect on cloud cover. Science 313 (5787), 655–658.
Khain, A. P., BenMoshe, N. and Pokrovsky, A., 2008, Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 65 (6), 1721–1748.
Köhler, H., 1936, The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32, 1152.
Lebo, Z. J. and Morrison, H., 2014, Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon. Weather Rev. 142 (3), 991–1009.
Lee, S. S., Donner, L. J., Phillips, V. T. J. and Ming, Y., 2008, The dependence of aerosol effects on clouds and precipitation on cloud-system organization, shear and stability. J. Geophys. Res. 113, D16202.
Lee, S. S., Feingold, G. and Chuang, P. Y., 2012, Effect of aerosol on cloud- environment interactions in trade cumulus. J. Atmos. Sci. 69 (12), 3607–3632.
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D. and Ding, Y., 2011, Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geosci. 4 (12), 894 – 888.
Lohmann, U. and Feichter, J., 2005, Global indirect aerosol effects: a review. Atmos. Chemis. Phys. 5 (3), 715–737.
Menon, S., Genio, A. D. D., Koch, D. and Tselioudis, G., 2002, GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. J. Atmos. Sci. 59 (3), 692–713.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A.,1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102 (D14), 16663–16682.
Rosenfeld, D., 1999, TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26 (20), 3105.
Rosenfeld, D., 2006, Aerosol-cloud interactions control of earth radiation and latent heat release budgets. Space Sci. Rev. 125, 149–157.
Rosenfeld, D. and Lensky, I. M., 1998, Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteorol. Soc. 79 (11), 2457–2476.
Rosenfeld, D., Rudich, Y. and Lahav, R., 2001, Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 98 (11), 5975–5980.
Rosenfeld, D. and Woodley, W. L., 2000, Deep convective clouds with sustained supercooled liquid water down to -37.5 degrees C. Nature 405, 440–442.
Rossow, W. B., Walker, A. W. and Garder, L. C., 1993, Comparison of ISCCP and other cloud amounts. J. Clim. 6 (12), 2394–2418.
Rotstayn, L. D. and Penner, J. E., 2001, Indirect aerosol forcing, quasi forcing, and climate response. J. Clim. 14 (13), 2960–2975.
Storer, R. L., van den Heever, S. C. and Stephens, G. L., 2010, Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci. 67 (12), 3904–3915.
Shepherd, T.G., 2014, Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708. http://dx.doi.org/10.1038/NGEO2253.
Tao, W. K., Chen, J. P., Li, Z., Wang, C. and Zhang, C., 2012, Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 50 (2).
Thompson, G. and Eidhammer, T., 2014, A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 71 (10), 3636–3658.
Twomey, S., 1977, The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 34 (7), 1149–1152.
Zhang, D. and Anthes, R. A., 1982, A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 21 (11), 1594–1609.
Zhang, J., Lohmann, U. and Stier, P., 2005, A microphysical parameterization for convective clouds in the ECHAM5 climate model: Single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. J. Geophys. Res. 110, D15S07.