یک مطالعه عددی تولید امواج درونی در اثر برهمکنش مدهای فشارورد جزر و مدی با توپوگرافی کف در خلیج عمان و تنگة هرمز با استفاده از مدل iTides

نویسنده

دانشگاه صنعتی مالک اشتر

چکیده

بخش عمده‌ای از انرژی جزرومدی از طریق اندرکنش جریانهای جزرومدی با توپوگرافی بستر مستهلک می‌شود. دریای عمان یک دریای حاشیه‌ای است که مولفه جزرومدی غالب در آن مولفه نیمه‌روزانه M2 است و دارای توپوگرافی متغیری است. لذا مطالعه جزرومد درونی و انرژی حاصل از آن اهمیت پیدا می‌کند. جزرومد درونی یک پدیده‌ی بزرگ مقیاس و باروتروپیک است که باعث نوسان ستون آب با طول موج بلند می‌شود. با توجه به اینکه در خلیج‌عمان، مولفه جزرومدی نیمه روزانه M2 مولفه غالب است، لذا عامل اصلی شکل‌گیری جزرومد درونی در خلیج عمان، این مولفه است. در این مقاله، اندر‌کنش یک جریان جزرومدی باروتروپیکی با توپوگرافی بستر ارزیابی می‌گردد. این کار به وسیله مدل عددی iTides که یک مدل باروتروپیکی است و اعمال یک جریان جزرومدی نوسانی با پریود نیمه روزانه انجام گرفته است. نتایج مدل‌سازی، شکل‌گیری جزرومد درونی با طول موجی از مرتبه 10 کیلومتر را نشان می‌دهد که وقتی به آب کم‌عمق می‌رسد طول موج آن به مرتبه کیلومتر کاهش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A numerical study of internal tide generation due to interaction of barotropic tide with bottom topography in the Oman Gulf

نویسنده [English]

  • Mohammad Reza Khalilabadi
Malek Ashtar University of Technology, Shiraz, Iran
چکیده [English]

A major part of tidal energy is usually dissipated by the interaction of tidal currents with bottom topography. Gulf of Oman is a marginal sea which has variable topography and its dominant tidal constituent is M2 semi-diurnal tide. In this paper, the interaction of barotropic tidal current with bottom topography is evaluated. This phenomenon causes the formation of internal tide. Internal tide is a large scale and baroclinic phenomena which causes long wave oscillations of water column. Whereas the M2 semi-diurnal constituent is dominant, therefore this constituent is the main force for formation of internal tide in the Gulf of Oman. In this paper, numerical modeling of internal tide due to M2 semi-diurnal constituent is  presented. This modeling is done using iTides model. This model is a software package which produces the internal wave field from the barotropic tide. The iTides package provides a graphical user interface (GUI) that combines all the theoretical elements necessary for producing a desired internal tide field given a set of system parameters. The model setup begins by specifying the pathway of the file to the topography, where the topography shape is specified by the horizontal coordinate assigned x, topography height h and the topographic change dh (both h and dh are functions of x). We use this dataset to define the maximum depth of the problem Ho as the maximum depth reached by the topography. Then, the density stratification must be given. The final step requires the user to specify the tide (forcing) frequency and the Coriolis frequency of the problem. After all parameters have been declared, the topography shape and stratification profile can be reviewed. This work has been done by implementation of iTides numerical model, which is a borotropic model, and forcing of an oscillating tidal current with semi-diurnal period. The model results show the formation of internal tide with a wavelength of order of O (10km) which reduces to O (1km) when reaches the shallow water. According to studied profiles of stability frequency, density stratification is quite stable in the Gulf of Oman and this Gulf is capable for formation of internal tide. Internal tide wavelength is of order of tens kilometers which reduces to a few kilometers when reaching the shallow zones. In the results, also the energy dissipation over the topography is visible. Most of internal tide energy is related to first modes. This phenomenon is mostly extended to deep zones, but for shallow zones internal tide energy is considerable between 1 to 3th internal tide modes. This fact may be due to iterated reflection of internal tidal beams from continental shelf and coastal shallow waters. The maximum energy Flux of primary modes in deep water (with depth of about 3000 meters) reaches to 20 kiloWatt per meter, whereas by decreasing the water depth, this amount of energy Flux reduces. The amount of internal tidal energy Flux in the Strait of Hormuz shallow water reaches bellow five kiloWatt per meter.  
 

کلیدواژه‌ها [English]

  • topography
  • Barotropic
  • internal tide
  • Gulf of Oman
  • iTides model
خلیل‌آبادی، م. ر. و اکبری‌نسب، م.، 1393، پایداری ایستابی و پخش دوگانه در خلیج عمان، م. علوم و فناوری دریا, 21(71)، 10-19.
خلیل‌آبادی، م. ر. و سرانجام، ب.، 1391، مبانی دینامیک اقیانوس‌ها، اول تدوین تهران: انتشارات دانشگاه صنعتی مالک اشتر.
خلیل‌آبادی، م. ر. و صدری نسب، م.، 1392، کاربرد فناوری سنجش از دور در استخراج مشخصه‌‌های امواج داخلی در خلیج عمان، تهران، دومین همایش بین‌المللی اقیانوس‌شناسی خلیج فارس و دهمین همایش علوم و فنون دریایی ایران.
خلیل‌آبادی، م. ر.، صدری نسب، م.، چگینی، و. و اکبری‌نسب، م.، 1394، مدل سازی سه بعدی امواج داخلی غیرخطی در ناحیة فلات قاره خلیج عمان. 6(22), 19-28.
 
Acchione, D., Pratson, L. and Ogston, A., 2002, The shaping of continental slopes by internal tides, Science, 296, 724-727.
Balmforth, N. J. and Peacock, T., 2009, Tidal conversion by supercritical topography, Journal of Physical Oceanography, 39, 1965-1974.
Buijsman, M., Kanarska, Y. and McWilliam, J., 2010a, On the generation and evolution of nonlinear internal waves in the South China Sea, J. of Geoph. Res., 115(C02012), 1-17.
Buijsman, M., McWilliams, J. and Jackson, C., 2010b, East‐west asymmetry in nonlinear internal waves from Luzon Strait, J. of Geoph. Res., 115(C10057), 1-14.
Da Silva, J. C., New, A. L. and Magalhaes, J. M., 2009, Internal solitary waves in the Mozambique Channel: observations and interpretation, Journal of Geophysical Research, 114-128.
Echeverri, P., Flynn, M. R., Peacock, T., and Winters, K. B., 2009,. Low-mode internal tide generation by topography: an experimental and numerical investigation, Journal of Fluid Mechanics, 636, 91-108.
Gerkema, T., 1996, A unified model for the generation and fission of internal tides in a rotating ocean, Journal of Marine Research, 54, 421-450.
Gerkema, T., Staquet, C. and Bouruet-Aubertot, P., 2006, Decay of semi-diurnal internal-tide beams due to subharmonic resonance, Geophys. Res. Lett., 33-42.
Khalilabadi, M. R. and Mansouri, D., 2013, The effect of super cyclone “GONU” on sea level variation along Iranian coastlines, Submitted for Persian Gulf Journal, Indian Journal of Geo-Marine Science .
Khalilabadi, M. R., Sadrinasab, M., Chegini, V. and Akbarinasab, M., 2015, Internal wave generation in the Gulf of Oman, Indian Journal of Geo-Marine Science, 44(3), 519-527.
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St. Laurent, L. C., Schmitt, R. W. and Toole, J. M., 2000, Evidence for enhanced mixing
over rough topography in the abyssal ocean, Nature, 403, 179-182.
Meirion, T. J. and Former, C., 2014, GEBCO, Retrieved 2013, from http://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?request=getCapabilities&service=wms&version=1.1.1
Munk, W., 1997, Once again: once again—tidal friction, Progress in Oceanography, 40, 7-35.
Munk, W. and Wunsch, C., 1998, Abyssal recipes II: energetics of tidal and wind mixing, Deep-Sea Research, 45, 1977-2010.
Petrelis, F., Llewellyn, S. S. and Young, W. R., 2006, Tidal conversion at a submarine ridge, Journal of Physical Oceanography, 36, 1053-1071.
Polzin, K. L., Toole, J. M., Ledwell, J. R. and Schmitt, R. W., 1997, Spatial variability of turbulent mixing n the abyssal ocean, Science, 276, 93-96.
Saidi, S., Mercier, M., Echeverri, P., Mathur, M. and Peacock, T., 2012, iTides Manual. Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge: Massachusetts Institute of Technology.
Small, J. and Martin, J., 2002, The generation of non-linear internal waves in the Gulf of Oman, Continental Shelf Research, 22(8), 1153-1182.
St. Laurent, S. J., 2003, The generation of internal tides at abrupt topography, Deep-Sea Res., 50, 987-1003.
Wunsch, C., 1998, The work done by the wind on the ocean circulation. Journal of Physical Oceanography, 28, 2331-2339.
Zhang, Z., Fringer, O. and Ramp, S., 2010, Three-dimensional, nonhydrostatic numerical simulation of nonlinear internal wave generation and propagation in the South China Sea, Stanford University, Civil and Environmental Engineering, Stanford: Stanford University.