تعیین دقیق مرز بی هنجاری های میدان پتانسیل با استفاده از مشتق افقی متعادل و مشتق کل افقی مرتبه دوم نرمال سازی شده

نویسندگان

1 دانشگاه تهران

2 دانشگاه جامع امام حسین (ع)

چکیده

روش‌های متعدد عرضه شده برای افزایش توان تفکیک لبه‌ها، اکثرا براساس مشتقات افقی یا عمودی میدان پتانسیل هستند. فیلتر‌ی مانند مشتق کل افقی (THD) که در تعیین لبه منابع عمیق کارایی کمتری دارد و یا فیلتر‌هایی مانند TDX و Theta که حساسیت کمتری به عمق بی‌هنجاری وهمچنین دقت بیشتری در تشخیص لبه‌ها، نسبت به فیلتر THD دارند. در این تحقیق، روش مشتق افقی متعادل (BHD) و مشتق کل افقی مرتبه دوم به صورت نرمالایز شده (TDX2) برای تعیین دقیق مرز بی‌هنجاری‌های میدان پتانسیل بکار رفته است. در این تحقیق بر روی داده‌های یک مدل مصنوعی بدون نویز، کارایی فیلتر‌های مورد استفاده بررسی و سپس بر روی داده‌های مدل با نویز اتفاقی 2% مقایسه‌ی بین فیلتر‌ها انجام شده است. نتایج حاصل نشان می‌دهدکه مختصات افقی لبۀ به‌دست آمده از فیلترهای BHD و TDX2، در مقایسه با فیلتر‌های TDX و Theta، به مختصات لبه مدل نزدیکتر است. همچنین، فیلترهای BHD وTDX2 لبه بی‌هنجاری‌های حاصل از تداخل اجسام مجزا با دامنه‌های متفاوت را از دیگر فیلترها بهتر تفکیک می‌کنند . همچنین در این تحقیق، فیلتر‌های مذکور بر روی داده‌های گرانی قنات موسسۀ ژئوفیزیک به کار برده شده است. بر اساس نتایج حاصله، فیلتر‌های TDX2 و BHD با تفکیک لبه-های بی‌هنجاری قنات و سایر بی‌هنجاری‌های موجود، روند کلی قنات را به خوبی نشان می‌دهند. لبه‌ی به‌دست آمده از این فیلتر‌ها حدودا 27/1 متر است، در حالیکه برای فیلترهای TDX و Theta، 7/2 متر است که با توجه به اطلاعات زمین‌شناسی منطقه احتمال وجود قناتی با این عرض بعید است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Precise edge detection of anomalies in potential field data using balanced horizontal derivative and second-order normalized total horizontal derivative

نویسنده [English]

  • Safa Khazaei 2
1
2 IHU
چکیده [English]

Multiple methods available to increase the resolution of the edges, which usually are the functions composed by the first-order horizontal derivative and vertical derivative of potential field data. Cooper and Cowan (2006) presented total horizontal derivative (THD) which has less performance in determining edge of deep sources. Cooper and Cowan (2006) and Wijns et al. (2005) respectively have presented TDX and the Theta which are less sensitive to depth of the anomaly, also they have greater accuracy in detecting of the edges than the THD filter. The edge detection filters are all the functions based on the horizontal derivative and vertical derivatives of the data. The maxima of total horizontal derivative and the zero of the vertical derivative are corresponding to the edges of the source.
We find that the horizontal coordinates of the maxima of total horizontal derivative and the zero of vertical derivative are both bigger than the true locations of the edges, and the coordinates of the maxima of total horizontal derivative are more close to the true edges. We prove that the ratio of the total horizontal derivative to the second-order vertical derivative can obtain more accurate edge detection results.
We use the balanced horizontal derivative (BHD) edge detection filter, which uses the ratio of the first-order horizontal derivative to the second-order horizontal derivative to recognize the edges of the source, and the recognized edges by the BHD edge detection filter are more correct and are more insensitive to noise. We also use of second-order normalized total horizontal derivative (TDX2) to detect anomaly edges, which uses the ratio of the first vertical derivative of the horizontal to the second-order horizontal derivative to recognize the edges of the source, which gives the same results as the BHD. Ma and et al. (2014) have presented the BHD and the TDX2 filters as follows:
BHD=tan^(-1)⁡(√(("∂f" /"∂x" )^2 "+" ("∂f" /"∂y" )^2 )/(k×-((∂^2 f)/(∂x^2 )+(∂^2 f)/(∂y^2 )) )) (1)
where, ∂f/∂x, ∂f/∂y and ∂2f/∂z2 are the derivatives of the data f, and, K=(mean(∂f/∂z))/(mean((∂^2 f)/〖∂z〗^2 )) and the maxima of the absolute value of the BHD are corresponding to the edges of the source.

〖TDX〗_2=tan^(-1)⁡(√(〖((∂f_z)/∂x)〗^2+〖((∂f_z)/∂y)〗^2 )/|(∂^2 f)/(∂z^2 )| ) (2)

where, fz is the first-order vertical derivative of potential field f.
The results of the modeling on synthetic and real data shows that the edges that recognized by the TDX2 and the BHD are more precise and clear, by the presented methods are consistent with the true values for the shallow anomaly .and the BHD and the TDX2 filters can display the edges of shallow and deep sources simultaneously. For the anomaly of three separated objects interfere with different domains, filters break boundary anomalies better than previous filters. Also in this study, the mentioned filters have been used on gravity data of the aqueduct in the geophysics institute. Based on the obtained results, TDX2 and BHD filters show well the general trend of the aqueduct by separating the anomaly edge of the aqueduct and other existing anomalies on the aqueduct residual map. The width of the edge obtained by applying these filters is about 1.27m whereas that is 2.7m for the TDX and Theta filters which is impossible according to the geological information of the study area. Studies show that, the obtained width for the aqueduct is determined by the BHD and TDX2 filters more accurate than others.

کلیدواژه‌ها [English]

  • balanced horizontal derivative filter
  • Edge detection
  • second-order normalized total horizontal derivative filter
  • Potential Field
ابراهیم‌زاده اردستانی، و. و متولی عنبران، س. ه.، 1386، محدودیت‌های روش سیگنال تحلیلی در تعیین عرض بی‌هنجاری‌های گرانی، م.، 33(2)، 83-77.
علمدار، ک. و انصاری، ع.، 1389، تعیین مرز بی‌هنجاری‌های میدان پتانسیل با استفاده از فیلترهای فاز محلی، م. فیزیک زمین وفضا، 36(1)، 58-47.
نجاتی‌کلاته، ع. و روشندل کاهو، ا.، 1392، تعیین مرز داده‌های میدان پتانسیل با استفاده از تصویرسازی زاویه تتا، م. ژئوفیزیک ایران، 7(1)، 33-24.
 
Blakely, R.J., 1995, Potential theory in gravity and magnetic application,CambridgeUniversity Press.
Cooper, G. R. J. and Cowan, D. R., 2006, Enhancing potential field data using filters based on the local phase. Comput. Geosci., 32, 1585-1591.
Cooper, G. R. J. and Cowan, D. R., 2008, Edge enhancement of potential-field data using normalized statistics, Geophysics, 73, H1-H4.
Cordell, L., 1979, Gravimetric expression of graben faulting in Santa Fe Country and theEspanola Basin, New Mexico, New Mexico Geol. Soc. Guidebook, 30thField Conf,59-64.
Cordell, L. and Grauch, V. J. S., 1985, Mapping basement magnetization zones from aeromagneticdata in the San Juan Basin, New Mexico. In: Hinzc, W. J. (Ed.), the utility of regionalgravity and magnetic anomaly, Society of Exploration Geophysicists, 181-197.
Even, H. M., 1936, The place of the vertical gradient in gravitational interpretations, Geophysics, 1, 127-136.
Fedi, M. and Florio, G., 2001, Detection of potential fields source boundaries by enhancedhorizontal derivative method, Geophys. Prospect., 49, 40-58.
Gerkens, A. J. C., 1989, Foundation of exploration Geophysics.
Hood, P. J. and Tasked, D. J., 1989, Aeromagnetic gradiometer program of the Geological Surveyof Canada, Geophysics, 54, 1012-1022.
Hsu, S., Sibuet, J. C. and Shyu, C., 1996, High-

resolution detection of geologic boundaries from potential field anomalies: an enhanced analytic signal technique, Geophysics, 61, 373-386.
Ma, G., 2013a, Edge detection of potential field data using improved local phase filter, Explor. Geophys., 44, 36-41.
Ma, G., 2013b, Combination of horizontal gradient ratio and Euler (HGR-EUL) methods forthe interpretation of potential field data, Geophysics, 78, J53-J60.
Ma, G., Liu, C. and Li., L., 2014, Balanced horizontal derivative of potential field data to recognize the edges and estimate location parameters of the source, J. Appl. Geophys., 108, 12-18.
Ma, G., Li, L., 2012, Edge detection in potential fields with the normalized total horizontalderivative., Comput. Geosci., 41, 83-87.
Miller, H. G. and Singh, V., 1994, Potential field tilt-a new concept for location of potentialfield sources., J. Appl. Geophys., 32, 213-217.
Rajagopalan, S. and Milligan, P., 1995, Image enhancement of aeromagnetic data using automatic gain control, Explor. Geophys., 25, 173-178.
Roest, W. R., Verhoef, J. and Pilkington, M., 1992, Magnetic interpretation using the 3-D analyticsignal, Geophysics, 57, 116-125.
Verduzco, B., Fairhead, J. D. and Green, C. M., 2004, New insights into magnetic derivatives forstructural mapping, Lead. Edge., 23, 116-119.
Wijns, C., Perez, C. and Kowalczyk, P., 2005, Theta map: edge detection in magnetic data, Geophysics, 70, 39-43.