واکاوی آماری – همدیدی توفان‌های تندری سواحل جنوبی ایران

نویسندگان

1 دانشگاه رازی کرمانشاه، دکترای اقلیم شناسی

2 دانشگاه تهران

چکیده

هدف مطالعه پیشرو بررسی آماری، ترمودینامیکی و همدیدی توفان‌های تندری سواحل جنوبی کشور طی دوره 1995-2014 می‌باشد. بدین منظور از داده‌های ایستگاه‌های همدید استان‌های بوشهر و هرمزگان استفاده شد. جهت تحلیل همدیدی از داده‌های ارتفاع ژئوپتانسیلی ترازهای 500-1000 هکتوپاسکال، مؤلفۀ u، v و فشار سطح دریا استفاده شد. برای تحلیل شرایط ترمودینامیکی نیز داده‌های جو بالا توسط شاخص‌هایی نظیر CAPE، LI، TT بررسی شدند. نتایج نشان داد روند مکانی این پدیده از غرب به شرق کاهش می‌یابد و پتانسیل رخداد آن در استان بوشهر بیش از هرمزگان است. ازنظر زمانی، بیشترین رخداد این پدیده در پاییز با 45 و زمستان با 43 درصد ثبت‌شده است. در مقیاس ساعتی تفاوت قابل‌توجهی در ساعت مختلف مشاهده نمی‌شود و امکان رخداد آن در تمامی ساعت‌ها به‌ویژه ساعات صبح محلی وجود دارد. نتایج همدیدی حاکی از نفوذ بادهای غربی تا جنوب عربستان و قرارگیری ناحیه واگرایی و منطقه فرارفت تاوایی مثبت روی منطقه مطالعاتی است که شرایط ناپایداری و صعود هوا را ایجاد می‌کند. این گسترش بادهای غربی یا ناشی از شکل‌گیری سامانه‌های بندالی در تراز میانی جو و یا ناشی از وزش نصف‌النهاری آن‌ها و فرارفت هوای سرد از اروپا یا شمال آسیا روی شرق مدیترانه است. مقادیر حاصل از شاخص‌های ترمودینامیکی نشان داد که در این منطقه، همرفت و ناپایداری‌های ایجادشده تحت تأثیر شرایط محلی، عامل اصلی رخداد این پدیده نمی‌باشند و در صورت فراهم شدن شرایط مناسب در ترازهای بالایی جو به‌عنوان عامل تشدید کنند این پدیده محسوب می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Statistical-synoptic analysis of thunderstorm in the Southern Coast of Iran

نویسنده [English]

  • jafar masoompour samakosh 1
چکیده [English]

Thunderstorms are regarded not only as a significant weather event but also as a key element in water and electricity cycles of the atmosphere. Generally, researchers consider the intense weather instability as a result of convection in lower levels of the atmosphere with high levels enough of humidity. Usually statistic instability, the humidity of lower levels of the atmosphere and lifting mechanisms near the ground are the main factors leading to convection. Moreover, the combination of three factors, instability, humidity and convergence in lower levels of the atmosphere plays an important role in increasing the possibility of thunderstorms. Accompanying phenomena like lightning, tornado, hail, winds, heavy precipitations (Changnon, 2001 and 1925) and hazardous atmospheric phenomena like turbulence, freezing, and wind sheering make considerable irrecoverable damages to natural and human environments, therefore recognizing the features of these phenomena have always been attracting the attention of researchers. The present study aims at recognizing statistic of thermodynamic, and synoptic features of thunderstorms of southern coasts of Iran. Referring to the archive of National Meteorological Organization, hourly data of atmospheric phenomena of 10 synoptic stations during a common twenty-year period (1995- 2014) were extracted. The data were processed in temporal scales of year, season and month. The data of upper atmosphere (radio-sound data), available in the website of Wayoming University, were applied to investigate the thermodynamic features of the occurred thunderstorms. The thermodynamic features include KI, SI, TT, LI, CAPE indices and skew- T chart in RAOB software. The days with the occurrence of thunderstorms had 5 mm or more at least in two stations that were selected to find synoptic patterns. As the samples were limited, synoptic patterns were done manually. The required maps were prepared using the data of geopotential height in 1000 - 500 hPa levels. Besides wind components u and v and sea level pressure, extracted from NCEP/ NCAR website, were mapped by GrADS software. Checking yearly frequency of thunderstorm occurrence in the southern coasts of Iran showed that the frequency of occurrence of storms in Booshehr station was more than its frequency in Hormozgan station. Moreover, the thunderstorms of Booshehr have a better chronological orderas it occurs during all common years. However, except for BandarAbbas, there is no chronological order for this phenomena. Therefore, it can be said that the occurrence of thunderstorm in the western coasts of the south of Iran has higher frequency than the central and the eastern regions, making it a potential area in this region for storm formation. The largest number of thunderstorm occurrence in seasonal scale is recorded for fall with 45% and winter with 43% respectively. Following seasonal conditions, the largest number of thunderstorm occurrence in monthly scale is recorded for cold months. In Hormozgan station, November, December, and January have more frequencies, while in Booshehr station January, February and March have more frequencies. Analyzing the applied instability indices showed that there was a slight extreme and great CAPE (more than 2500) in Bandarabas station. Besides the values of convection indices TT and KI for most of the thunderstorms suggested the possibility of convection occurrence. Instability indices LI and SI for the occurred thunderstorms reveals conditions of limited instability. Synoptic analysis shows not only the dominance of the westerly winds extending to the south of Saudi Arabia but also the location of divergent region and positive vorticity advection region in the studied region, making instability conditions raising air. The spread of the westerly winds is either due to formation of blocking system in the atmospheric middle level or their meridional blowing and cold air advection from Europe or the north of Asia to the east of Mediterranean. Statistical findings reveal that the occurrence of thunderstorms of western coasts of the Persian Gulf, have higher potential, and more frequency than the central and eastern regions. In seasonal scale, the largest number of occurrences is recorded for fall and winter respectively, while there is no substantial difference in different hours of day and night in hourly scale. As a matter of fact, they are possible to happen all the times. Synoptic analyses show that there is the dominance of two patterns of blocking systems and westerlies trough in the middle of atmosphere leading to instability and rising air in the studied region. The divergent region and positive vorticity advection region in the studied regions make instability condition and hence rising air. Based on the findings of thermodynamic indices, it can be said that convective activities and local instabilities are rarely responsible for thunderstorm occurrence in the region. Also for the occurrence of severe convective activities and relatively high instability, extreme instability and extreme severe instability is coincident with limited thunderstorm occurrences.

کلیدواژه‌ها [English]

  • Instability indices
  • RAOB
  • Blocking System
  • Advection
  • Thunderstorm
امیدوار، ک.، صفرپور، ف. و زنگنه اینالو، ا.، 1392، بررسی و تحلیل همدیدی سه رخداد تگرگ شدید در استان فارس، جغرافیا و توسعه، 30، 157-178.
جلالی، ا. و جهانی، م.، 1387، بررسی پراکنش مکانی بارش‌های تندری شمال غرب ایران، فضای جغرافیایی، 23، 35-58.
جلالی، ا.، رسولی، ع. ا. و ساری صراف، ب.، 1385، توفان های تندری و بارش های ناشی از آن در محدوده ی شهر اهر، جغرافیا و برنامه ریزی، 24، 19-33.
جوانمرد، س.، گلستانی، س. و عابدینی، ی.، 1390، مطالعه و بررسی توزیع زمانی و مکانی نرخ بارش‌های همرفتی و پوششی روی ایران با استفاده از داده‌های ماهواره TRMM-TMI، مقاله نامه فیزیک ایران، 2719-2716.
خالدی، ش.، خوش اخلاق، ف. و خزایی، م.،1390، تحلیل همدید توفان های تندری سیلاب ساز استان کرمانشاه، م. چشم انداز جغرافیایی، 13، 12-32.
خوشحال دستجردی، ج. و علیزاده، ت.، 1389، بررسی همدیدی و ترمودینامیک رگبار موجد سیلاب 24/6/88 استان خراسان رضوی، برنامه ریزی و آمایش فضا، 4، 87-109.
خوشحال دستجردی، ج. و قویدل رحیمی، ی.، 1386، شناسایی ویژگیهای سوانح محیطی منطقه شمال غرب ایران (نمونه مطالعاتی: خطر توفانهای تندری در تبریز)، مدرس علوم انسانی، 11(53)، 101-115.
رحیمی، د.، میرهاشمی، ح. و عابدی، ف.، 1391، تحلیل ترمودینامیک و سینوپتیکی سیلاب‌های لحظه‌ای مناطق خشک (حوضه زاینده رود)، علوم و مهندسی آبیاری، 3، 59-68.
صالحی، ب. و عالی‌جهان، م.، 1394، استخراج و تحلیل الگوهای همدید منجر به توفان های تندری دشت اردبیل، پژوهش‌های جغرافیای طبیعی، 47(3)، 498-333.
علیجانی، ب.، 1385، آب و هواشناسی همدید، چاپ دوم. انتشارات سمت، تهران.
لشکری، ح. و آقاسی، ن.، 1389، تحلیل همدید توفان تندری تبریز در فاصله زمانی (2005-1996)، جغرافیا و برنامه‌ریزی، 45، 203-234.
لشکری، ح. و حجتی، ز.، 1391، تحلیل سینوپتیکی – دینامیکی توفان‌های تندری در جنوب غرب کشور، سپهر، 21(82)، 14-21.
محمدی، ح.، فتاحی، ا.، شمسی پور، ع. ا. و اکبری، م.، 1391، تحلیل دینامیکی سامانه‌های سودانی در رخداد بارش سنگین در جنوب غرب ایران، تحقیقات کاربردی علوم جغرافیایی، 24، 7-24.
معصوم‌پور سماکوش، ج.، میری، م.، ذوالفقاری، ح. و یاراحمدی، د.، a1392، تعیین سهم بارش‌های همرفتی شهر تبریز براساس شاخص‌های ناپایداری، تحقیقات کاربردی علوم جغرافیایی، 31، 227-245.
معصوم‌پور سماکوش، ج.، میری، م. و فتح نیا، ا.، b1392، شبیه‌سازی نقش عوامل همرفتی در توفان‌های تندری نمونه موردی: ایستگاه مهرآباد، دومین کنفرانس بین‌المللی مخاطرات محیطی، دانشگاه خوارزمی، تهران.
 
Abhilash, S., Mohan Kumar, K., Shankar Das, S. and Kishore, K., 2010, Vertical structure of tropical mesoscale convective systems: observations using VHF radar and cloud resolving model simulations, Meteorol Atmos Phys, 109, 73-90.
Adelekan, I. O., 1998, Spatio-temporal variations in thunderstorm rainfall over Nigeria, Int. J. Climatol, 18, 1273-1284.
Chaudhuri, S. and Middey, A., 2014, Comparison of tropical and midlatitude thunderstorm characteristics anchored in thermodynamic and dynamic aspects, A-P J. Atmos Sci, 50, 179-189.
Christian, H., Blakeslee, H., Boccippio, R., Boeck, D., Buechler, W., Driscoll, D., Goodman, K. and Stewart, M., 2003, Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J Geophy resea, 108, 1-14.
Costa, S., Mezzasalma, P., Levizzani, V., Alberoni, P. and Nanni, P., 2001, Deep convection over Northern Italy: synoptic and thermodynamic analysis, Atmos. Rese., 56, 73-88.
Czernecki, B., Taszarek, M., Kolendowicz, L. and Szyga-Pluta, S., 2015, Atmospheric conditions of thunderstorms in the European part of the Arctic derived from sounding and reanalysis data, Atmos. Rese., 154, 60-72.
Davolio, S., Buzzi, A. and Malguzzi, P., 2007, High resolution simulations of an intense convective precipitation event, Meteorol. Atmos. Phys., 95, 139-154.
Delden, A. V., 2001, The synoptic setting of thunderstorms in Western Europe, Atmos, Rese., 56, 89-110.
Fallah Ghalhari, G. A. and Shakeri, F., 2015, an Assessment of temporal and spatial distribution of thunder storms in Iran, J. GIS, 7, 95-109.
Gheiby, A., Sen, N., Puranik, D. and Karekar, R., 2003, Thunderstorm identification from AMSU-B data using an artificial neural network, Meteorol. Applicat., 10, 329-336.
Guoxiang, Y. and Cixun, Sh., 1985, Large scale environmental conditions for thunderstorm development, Adv. atmos. Sci., 4, 508-521.
Kunz, M., Sander, J. and Kottmeier, Ch., 2009, Recent trends of thunderstorm and hailstorm frequency and their relation to atmospheric characteristics in southwest Germany, Int. J. Climatol, 29, 2283-2297.
Miku, S. P., Prtenjak, M. T. and Mahović, N. S., 2012, Analysis of the convective activity and its synoptic background over Croatia, Atmos. Rese., 104-105, 139-153.
Pineda, N., Rigo, T., Bech, J. and Soler, X., 2007, Lightning and precipitation relationship in summer thunderstorms: case studies in the North Western Mediterranean region, Atmos. Res., 85(2), 159-170.
Pissimanis, D. K., Notaridou, V. A. and Spyrou, C. K., 2006, Main characteristics of synoptic weather conditions associated with thunderstorm activity during the months of July and August in the city of Thessaloniki (Northern Greece), Theor. Appl. Climatol., 83, 153-167.
Tajbakhsh, S., Ghafarian, P. and Sahraian, F., 2012, Instability indices and forecasting thunderstorms: the case of 30 April 2009, Nat. Hazards Earth Syst. Sci., 12, 403-413.
Trentmann, J., Keil, C., Salzmann, M., Barthlott, C., Bauer, H. S., Schwitalla, T., Lawrence, M. G., Leuenberger, D., Wulfmeyer, V., Corsmeier, U., Kottmeier, C. and Wernli, H., 2009, Multi-model simulations of a convective situation in low-mountain terrain in central Europe, Meteorol. Atmos. Phys., 103, 95-103.